App Development for the Industrial IoT
According to sources, a staggering 5.5 million new devices are connected daily to an increasingly crowded IoT space with an estimated 6.4 billion devices currently “connected.” By 2020, Gartner is predicting as much as 25 billion things will be connected. A lot of the value that both people and companies will derive from these devices heavily depends upon interoperability, which places an emphasis on app development. When we say IoT , the term”things,” generally focuses on a group of devices large or small that can be connected wirelessly by sensors to the internet, each other and or the main base station. Chunka Mui with Forbes believes that, “The Industrial Internet of Things (IoT) is a network of physical objects imbued with information and communications technologies. It brings together many of the key technologies that will make or break every information intensive company.” App development for the Industrial IoT vs. consumer IoT We are use to finding new apps for our phones, smart homes and cars, but what about industrial applications? Contrary to what you might think, Industrial IoT app development surpasses the consumer side when it comes to compensation. In fact the Industrial IoT global market is projected to reach $319 billion dollars by 2020. Unlike their consumer counterparts, Industrial IoT may not come with out-of-the-box, ready to launch applications, and may require various modifications depending on the industry. The focus for Industrial development has been in translating big data in real-time with the use of Sensor-2-Server solutions. More reasons developers should jump on the Industrial IoT app train A few of the top reasons to develop applications for Industrial IoT are as follows: A chance to change your town–by assisting municipalities in becoming smarter cities; allowing you to create your vision–along with 18.5 million professional developers around the globe designing data capture analytics that can be translated in the digital ecosystem; and finally to open up the channel of revenues with the $235 billion dollars annually spent on IoT services. Today, a developer wanting to dive into this untapped market can start by leveraging the developer community sites with Github, Predix, or Intel’s hub to name a few. Jennifer Riggins with Programmable Web reminds us that, “The most important way to prepare yourself for the Industrial Internet of Things is to stay inquisitive.” After understanding the need for these complex industrial applications, the next challenge lies in cultivating best practices to replicate success within industry 4.0. Although the market is primed for the developer picking, it will still take trial and error, as it does with any new technology to fine tune more of an industrial application engine. As more resources (and opportunities) become available to the app development community, scalability is going to be the linchpin for enterprise deployments. Think of the value created if a municipality or energy company, for example, could deploy applications to hundreds of devices that reside at the outermost layer of an IT network.
The Glue that Holds Our “Connected” Dreams Together
Image courtesy of Flickr Creative Commons The visage of our “smart” or “connected” destiny is often presented to us in broad strokes: self-driving vehicles, connected homes, logistics, wearables – the list continues on with each piece of evolving and maturing technology. Smart cities have a bright future, and the application possibilities seem expansive, but often lost in the conversation is the technology that actually enables the connected world. Within a smart city – or even at a micro level – within one specific industry deploying smart technology, are a wide range of considerations: how much data are we transporting? How will we transport that data? How can we make our system intelligent? Where do we need to install these intelligence-driving platforms? How can we connect our data, operational technology and information technology to the necessary access points? Who/what has access to this data and control over these machines? These are only a few of the considerations that companies must address that are responsible for the industrial services driving cities and municipalities. While security is indeed a critical piece of this landscape, before any kind of connected or smart city can be achieved, the literal communication platform upon which that connectivity is deployed must first be implemented in a way that is not only compatible with current technology, but that will also be compatible with future technologies as well. From our perspective, there are five critical elements behind a smart city connected infrastructure: Robust Cloud Services Infrastructure designed to support all consumers of smart city deliverables Core Network Architecture that can rapidly expand in bandwidth and reach Extended Access Layer network architecture that incorporates a wide range of wired and wireless technologies to reach every sensor and device or that needs to connect to the smart city infrastructure A wide range of reporting devices such as sensors, visibility devices and other end points that create the data that makes a smart city work Distributed intelligence technology that allows for local execution of applications at the access layer plus global communication of data/analytics and information While each one of these tools is important in its own right, there is a common, underlying thread that connects them: each facet depends on a robust, reliable and secure communication platform. For smart cities, these communication platforms must be capable of enabling multiple methods of connectivity, but most importantly, they must be able to provide industrial-strength Wi-Fi. Wireless connectivity is the backbone of communication between the sensors that power all facets of the connected industrial infrastructure and the big data transport that is critical to the analytics that power “smart” enterprise. Not all industrial Wi-Fi platforms are created equal, and one of the major questions facing the ongoing development of smart infrastructure centers on how to ensure that these networks are secure and compatible across multiple, and sometimes proprietary, technologies. This certainly opens up a veritable can of worms, including the idea of standardization, but without the driving force of reliable and robust communication technology, most smart city dreams will remain just that – a dream.
Where is RF Technology for Oil and Gas Headed?
The entire landscape of the oil and gas industry is changing. Not only has the industry downturn forced operators to rethink their business models, but the RF technology supporting industry operations is quickly changing. It is more important than ever to make intelligent business decisions with the right technology in place. As a decision maker for your organization, you need to be aware of the technology that is pointing towards the future of automation and RF technology. Challenge yourself to think beyond basic command and control and picture a fully connected network – from Sensor-2-Server. Here’s a quick snapshot of the technology movement we are seeing in the oil and gas industry right now: The installed base of wireless Machine-to-Machine (M2M) devices is growing. More technology in the field allows operators to access more data from more sensor access points – on a grander scale than ever before. The ability to leverage Big Data supports intelligent decisions that will optimize business operations and cut down on expenses. The Industrial Internet of Things (IIoT) is the future of communication technology. With IIoT, data can be transported from its collection point to wherever it needs to go – anywhere in the network. This has sparked a convergence of OT and IT operations, driving RF technology networks closer to the concept of complete connectivity. With a fully connected network, decisions are made based on comprehensive data, which drives intelligent problem-solving. With that type of insight, you could better disperse your resources, leaving a positive impact on the organization for years to come. Sensor-2-Server (S2S) solutions that deliver intelligence to the access layer are critical to industry success. S2S solutions bring intelligence to the access layer, enabling edge devices to do more than simply transmit data. They support highly detailed data analysis such as predictive analytics. Imagine the operational decisions you could make with a complete set of data from the outermost edge of your network all the way back to the server. IoT App development is the next big thing. Programmable third-party applications are on the horizon of the wireless RF solutions market. These apps will support machine learning, distributed intelligence, predictive maintenance, and more at the edge of the network. Technology is being designed to enable these applications – which have the potential to lead the industry to the next frontier of RF technology.
IoT Evolution Expo 2016 Recap
IoT Evolution Expo invaded Las Vegas this week by taking over Caesars Palace. The conference focus was to be a premier source of information needed to help drive your enterprise forward with the latest in IoT applications. A few of the tracks found this year at IoT Evolution included IoT Security, Fog Computing and IoT Enterprise. Overall this expo gave attendees the chance to listen to various talks and panel discussions, as well as hands-on demos on the exhibitor floor, and evening networking nights with industry experts and peers. Here are some of the posts during the event: Diving into the IoT Evolution sessions, we learn the weakness of our smartphone. Godfrey Chua, analyst at Machina Research, informs us that the smartphone can be a very weak link in IoT and M2M communications when it is used as a remote control. And…IoT Evolution continued with more panel discussions. Yann Kulp, VP SmartSpace North America with Schneider Electric tells us that, the panel with GE, Amazon, US Celluar and Argus Insights offered intriguing updates with the use of Wiser Air in your home and other Wi-Fi IoT applications. FreeWave was fortunate to participate this year on both the Oil and Gas: Pirates and Protection, as well as the Brown Field Round Table: What to do when it’s too late to start again panel discussions. The Pirates and Protection panel give us all a chance to dive deeper into the critical industries and what IoT secure options area available for these remote locations. My second panel of the night with the Brown Field Round Table gave attendees to hear real world case study examples of Sensor-2-Server implementation challenges with blending older SCADA systems with the latest IoT solutions for continuous real-time results. Time to see an IoT application at work! James Brehm & Associates tried their hand at capturing this IoT conference with virtual reality technology. A new solution from RICOH THETA. The 360 angle is best viewed prior to hitting up Margaritaville. Interesting to see the “Workspaces & IoT” concept discussed as well. Digital workspaces takes center stage at IoT Evolution as Global Workspace Analytics reports 3.7 million U.S. employees now work from home. Cynthia Artin with IoT Evolution informs us that,”while the IoT is arguably taking off faster in more industrial domains (factories, farms, transportation), and has the most “sizzle” in consumer domains (smart homes, smart cars, fitness wearables), there is new energy forming around IoT enhanced offices.” Now as this year’s IoT conference comes to a close, we remember all the ways IoT will change our enterprise and our life this year. One thing is clear, the more we innovate, the more we strive to become more efficient, automated and safety operated within fog computing and cloud applications. We hope you have enjoyed this week’s roundup, as always tells us about your IoT highs and lows.
IoT Top News: Fog Computing Influences Apps
This week BI Intelligence revealed the key benefits of fog computing along with a list of industries adapting this methodology. It is estimated that 5.6 billion IoT devices owned by enterprise and government will soon use fog computing for gathering and processing data. Let’s dive into some recent news from the past week and start by taking a closer look at the latest development in fog (edge or access layer) computing. Fog Computing in the IoT Forecasts industries and adoption benefits Edge or fog computing will become a priority as enterprise deals with the exploding amount of data waiting to be collected, sorted and processed. “The ‘Internet of Everything’ — all of the people and things connected to the internet — will generate 507.5 zettabytes (1 zettabyte = 1 trillion gigabytes) of data by 2019, according to Cisco. A deeper dive into this week’s top news show us a few IoT applications ready to change our world, from farmer robots to drones reconstructing car crashes. Robots are coming to a farm near you The cost of adding robots to agriculture still remains high, yet these IoT machines are threating to shake up the farming community around the globe. Sara Olson, Lux Research Analyst recently reported that, “However, the costs of many systems are coming down, while wages rise due to labor shortages in some areas, and the benefits robots bring in the form of increased accuracy and precision will start to pay off in coming years.” Drones expected to reconstruct car crashes The Justice Department has plans this week to start running tests gauging the ability of drones to accurately reconstruct car crashes. Jeramie Scott, director of the Electronic Privacy Information Center’s Domestic Surveillance Project suggests that, “There should be public, transparent policies spelling out specific use cases to “ensure law enforcement drones acquired for one purpose,” like crash scene reconstruction, “are not then used for secondary purposes that undermine privacy and civil liberties,” like mass surveillance of the public.” We hope you have enjoyed this week’s short round up. Next time you see a smart device at work or around town, think about all the IoT sensors, Wi-Fi, automation and smart applications that come together to bring you state of the art technology experiences, and ask yourself “what will they think of next?”
Berg Insight: Bright Days Ahead For Wireless Automation
A recent report published by Berg Insight details the bright future ahead for Industrial IoT through the implementation of wireless automation technologies. Berg Insight senior analyst Johan Svanberg made note that higher levels of automation and IoT solutions enable “shorter lead times, lower inventories, increased throughput as well as more flexibility and the ability to respond faster to changing customer needs.” The wireless IoT device market is served by a multitude of players from various backgrounds including global automation solution providers, automation equipment and solution vendors, industrial communication specialists and IoT communication specialists. This new report from Berg Insight informs us that: 2015 estimate of wireless devices for industrial automation applications reached 4.8 million units worldwide. Wireless devices installed for industrial applications have a forecasted growth rate of 27.7 percent from 14.3 million connections at the end of 2015 to 62.0 million devices by 2021. Key Findings from Berg Insight: Wireless connectivity is instrumental in the Internet of Things era and the use of wireless solutions in industrial automation is increasing rapidly at all levels of automation systems. Industrial automation systems utilize wireless communication to connect remote and local facilities and equipment to increase operational efficiency. A wireless automation system contains a mix of network technologies, equipment and systems including enterprise and automation systems, network equipment, control devices and field devices. The most common wireless technologies in industrial automation include cellular, 802.11.x Wi-Fi, proprietary unlicensed ISM radio, Bluetooth, various LPWAN technologies and 802.15.4 based protocols such as WirelessHART, ISA100.11a and ZigBee. Berg Insight estimates that shipments of wireless devices for industrial automation applications, including both network and automation equipment, reached 4.8 million units worldwide in 2015. Growing at a compound annual growth rate of 25.1 percent, shipments are expected to reach 18.3 million by 2021. The installed base of wireless devices in industrial applications is forecasted to grow at a compound annual growth rate of 27.7 percent from 14.3 million connections at the end of 2015 to 62.0 million devices by 2021. Wi-Fi is widely used for backbone communications as well as in monitoring and control applications within factory automation where Industrial Ethernet has got a strong foothold. Bluetooth is also popular – often as a point-to-point wire-replacement between for example a mobile HMI solution and a field device or control unit. 802.15.4 networks are often used to connect wireless sensors and instrumentation in process automation. Cellular connectivity is typically used for backhaul communication between plants, connecting remote devices in long haul SCADA applications and for third party access to machinery and robots. LPWAN technologies are increasingly used in certain low data, long range applications. Most of the major vendors of wireless IoT devices in industrial automation offer a wide range of devices with various wireless technologies in order to support many different applications. Key Takeaways, According to Berg Insight: Companies are now deepening the integration between industrial automation systems and enterprise applications and the promise of IoT is getting more tangible by the day. Large multinational corporations are beginning to systematically develop and adopt best practices to maximise the benefits of IoT technology in every part of their organisations. IT/OT convergence, smart factories, Industry 4.0 and the Industrial Internet of Things are concepts which are part of the ongoing evolution of industrial automation. Innovation in sensors, wireless connectivity, collaborative robots, big data and cloud solutions along with seamless exchange of information between devices, systems and people paves the way for improved performance, flexibility and responsiveness throughout the enterprise value chain. For more information, read the full report from Berg Insight.
IIoT Top News: UAS Cleared for Takeoff
UAS, drones or unmanned aircraft, no matter what you call them — this was their week. Our news stream was flooded with updates on the newly announced rules and regulations for commercial UAS from the FAA. So, naturally we have dedicated this week’s top news round up to highlight some of our favorite UAS stories. Here is a quick recap on the new FAA rules for UAS USA TODAY has broken out the top five things you should know about the new FAA drone rules. Take a minute and get caught up on the basics. For example, the UAS operator must have their drone in sight at all times while in the air, and you still can’t fly at night. https://youtu.be/G6NAFIRZLBw Summary of New Commercial Drones Rules The wait is over, as many commercial UAS operators found out this week. John Goglia, with Forbes, breaks out the FAA new Part 107 rules which states, “It will eliminate many of the most cumbersome and expensive requirements currently imposed on commercial drone operators including the requirement for a so-called 333 exemption, a manned aircraft pilot’s license, a visual observer, the requirement to hold a certificate of authorization and the requirement to issue a notice to airmen before each flight.” FAA Approves the use of Small Commercial Drones Michael Walton, with Government Technology, explains, “The FAA new UAS rules would effectively lift the lid on flights by other potential operators who have held off using the technology — real estate agents who want bird’s-eye videos of properties, ranchers who want to count cattle and a multitude of other businesses.” At Long Last, New FAA Rules for Drones Air&Space Magazine tells us the best part of the new UAS rules is that “The FAA dropped its initial recommendation that would have required commercial UAV operators to hold a pilot’s license, a stipulation that experts feared would have stifled the booming drone industry, which is estimated to generate more than $82 billion and 100,000 jobs over the next decade. We hope you have enjoyed this quick UAS roundup. Don’t worry, we aren’t heading into a Sci-fi movie yet; Amazon, Walmart and alike will still have to wait in the holding pattern for approval to utilize drones for domestic delivery purposes. Overall, though, it was a game-changing week for small commercial UAS user everywhere, and a small step in the right direction for drones to assist with all our future needs.
Fog Computing: Answering the IoT Challenge
Fog Computing is being touted as the data communication solution our Internet of Things (IoT) devices are asking for by bringing the power of cloud computing closer to the end user. The fact is, the number of connected devices is going to continue to grow exponentionally. In fact, Gartner predicts that by 2020 IoT will include 26 billion connected things. Consider the impact that amount of data collected and processed will have. The Challenge Naturally, with billions of devices all connected to the cloud for manufacturing, oil and gas, utilities, municipalities and enterprise, to name a few, the data transmission and processing rate is bound to slow down – especially if the current cloud architecture is upheld. Some IoT devices use the cloud to store data long term, where other connected things send data to the cloud to be analyzed and sent back to the devicewith operational instructions. Ahmed Banafa with SemiWiki explains, “As dependence on our newly connected devices increases along with the benefits and uses of a maturing technology, the reliability of the gateways that make the IoT a functional reality must increase and make up-time a near guarantee.” What is Fog Computing? Fog Computing is a term coined by Cisco, that offers a way to analyze the data closer to the IoT device, thus saving valuable milliseconds. It may be hard to believe, but a millisecond has the power to prevent a M2M line shut-down, increase the speed at which power is restored to utilities and prevent an oil rig from leaking, just to name a few. An easy way to visually understand where Fog Computing fits in our IoT world, is by looking at the diagram above. It clearly shows that Fog Computing hangs between the cloud and the device, much like the fog on an early San Francisco morning. Fog Computing operates at the network edge, extending the cloud capabilities closer to the source (IoT device). Each IoT connection works with what’s called Fog Nodes to digest the intelligent data and then coordinate operational next steps, whether that be acting directly and or transmitting results to the cloud. The diagram below covers the types of response times IoT devices face from both Fog Nodes and main cloud locations. Fog Computing Brings Efficiency to Enterprise A recent report by Machina Research highlights the companies that pioneered Fog Computing and those poised to capitalize on the benefits in their near future. These companies are able to collect, protect, transport and control the data via IoT devices at the edge of the network, saving time and creating a more stream-line approach to sending and receiving data efficiently and more securely. Overall, as our need to connect explodes, we will not only need to think about IoT, but also the way in which intelligent data is processed from the critical infrastructure and back to the cloud. Fog Computing will continue to open more efficient channels across our IoT, as long as we allow it.
IoT Top News: Manufacturing Disruption
Industrial IoT continues to cause disruption; not just in manufacturing, but across many other industries as well. In the last few months we’ve been keeping a pulse on the state of digital transformation across the business landscape and have been discovering exciting new implementations of Industrial Internet of Things (IIoT). This week we’re highlighting the disruption Industrial IoT is instigating as product development and lifecycle management continues to evolve. Overcoming Three Key Barriers to Industrial IoT Industrial IoT has the potential to capture data in real-time, leverage big data analytics and streamline efficiency to name a few. So what’s hold back the industry? A major barrier has to do with culture of the operational technology (OT) organizations within the industry. The OT have a risk-averse way of thinking and see change as disruption, “Whereas IT is defined by constant change and innovation, that’s why it’s not unusual to see industrial automation systems in service for decades at a time with little or no change.” Bringing Smart Technology to Old Factories Can be an Industrial-Sized Disruption It sounds amazing to have robotic arms working together with the Industrial IoT. The reality is manufacturing is being disrupted by the implementation of IIoT. Mary Catherine O’Connor with the Wall Street Journal reminds us that, “Often plant managers can’t tell which sensor will most accurately collect the data they want from a machine without a series of test runs—a time-consuming process.” Product-Development Strategies in the IIoT Disruption The key to succeeding with IIoT disruption will be to focus on the new innovation of both product and software for the industry. Machine Design reminds us that, “IIoT is a disruptive force that will shape product-development trends over the next decade and beyond.” Relying on CMM to Keep IIoT’s Disruption Positive All the talk up to this point has been about the negative disruptive impacts IIoT is having on the industry. IIoT has the ability to drastically change manufacturing with a positive level of disruption introduced on the shop-floor. According the the American Machinist positive disruption can happen, “By using coordinate measuring machinery (CMM), machine shops or other manufacturers are able to capture the precise details of the geometry or surface conditions of a workplace. Working within IIoT, those manufacturers then are able to share such data between machines, exchange information between facilities, or with customers or suppliers.” Now we would like to leave you with this quick excerpt from Kevin Ashton, a British technology pioneer who co-founded the Auto-ID Center at the Massachusetts Institute of Technology (MIT) and inventor of the term “the Internet of Things.” How the Internet of Things Disruption Gains Traction – Extreme IoT We hope you have enjoyed this closer look at the disruption Industrial IoT is bringing to the table and what steps are being done to allow more implementation across the industry. Let’s us know what disruption you have seen with IIoT.
Internet of Things Expo: What to expect this week
The Internet of Things (IoT) is essential for both enterprise and personal, everyday use. Leading research firms agree that IoT will experience an unbelievable boom, possibly into the tens of billion devices by 2020 as computers, smartphones and sensors all require connectivity. This week’s Things Expo is a SYS-CON Media annual event, designed to help make sure your enterprise is IoT-ready with 80 breakout sessions focusing on many aspects of IoT, including big data’s use with predictive analytics, smart grid and Industrial IoT (IIoT), wearables, identity in IoT and modem data centers, among many other tracks. Here is a sneak peek at keynote Internet of Things Expo speaker Chris Matthieu. Also…Check out this clip of a Things Expo Power Panel It is going to be an action-packed three days of IoT information dumps from the experts. If you have the chance to be in New York this week, be sure to check out this conference and soak up some knowledge. Scott Allen, CMO of FreeWave, will be presenting “Sensor-2-Server: Intelligent Communication at the Access Layer” at ThingsExpo on Tuesday, June 7th from 4:40 – 5:15p.m. EDT. (http://www.cloudcomputingexpo.com/event/session/3238). Sensor-2-Server™ (S2S™) intelligent communications for the access layer can collect and transport the data that supports higher-level analytics. As IoT becomes adopted by industrial markets, there is going to be an increased demand for video, voice, data and sensor data communication from the outermost layer of the network. Let us know what you think. Which aspects of IoT are most interesting to you? What needs more coverage and information?