Ships that Sail Themselves

Is it time for ships to sail off on a journey by themselves? As the Internet of Things (IoT) connects the world, while the robotics industry continues to innovate, man and machine are merging together like never before. Unmanned aerial vehicles (UAVs) have impacted a number of industries from agriculture to security. If recent news is correct, it won’t be long before autonomous cars are traveling roads alongside us. Now, organizations and government agencies around the world are actively working to bring autonomous vessels to our oceans. What can we expect from unmanned ships operating in our largest bodies of water? IoT and robotics are being considered for a variety of commercial and military purposes at sea. For most of the world, it seems autonomous ships are in the testing phase, but there are big plans in the works around the globe: The British engine maker Rolls Royce Holdings, PLC is leading the Advanced Autonomous Waterborne Applications initiative with several other organizations and universities. The company is eyeing a timeline of remotely controlled ships setting sail by 2030 with completely autonomous ships in service by 2035. The timeline will be heavily dependent upon automation technologies’ ability to carry large amount of data from ship to shore to ensure safe operations. Recently, the UK’s Automated Ships Ltd and Norway’s Kongsberg Maritime, unveiled plans for a light-duty ship for surveying, delivering cargo to offshore installations and launching and recovering smaller remote-controlled and autonomous vehicles. “This ship is considered the world’s first unmanned ship for offshore operations and is being eyed for many uses including offshore energy, fish farming and scientific industries.” In the U.S., the Navy has begun to consider autonomous ships for a number of applications, but is cautiously approaching these new technology advancements. According to National Defense Magazine, “The Navy for now appears to be in no hurry to pour big money into drone ships and submarines. And there is little tolerance these days for risky gambles on technologies.” However, the article acknowledges that robots at sea could help do the jobs that are dangerous or costly for human operators, such as hunting enemy submarines, detonating sea mines, medical evacuations and ship repairs. The European Union (EU) appears to have a vested interest in sea robotics. As infrastructure costs rise for improving rails and roads, they have begun to seek alternative ways to move large quantities of cargo. According to Maritime Executive they have, “had a long-term goal of making short sea shipping more competitive with road and rail transport, which is under stress from the transportation bottlenecks caused by increasing volumes of internal trade.” As the EU faces massive infrastructure costs to upgrade road and rail, there is increased attention and effort directed at the “motorways of the sea.” The Defense Advanced Research Projects Agency (DARPA) has been testing a robotic ship called the “Continuous Trail Unmanned Vessel,” and has been running sea trials on its radar system. The radar is fastened to a parasail that enables heights of 500-1,500 feet. These are just a few of the autonomous vessel projects in the works. In order for unmanned vessels to operate, it is clear the ability to transport data in massive amounts will play a critical role in the success and safety of those sharing the sea with autonomous ships. As technologies evolve to meet these big data needs, we can eventually expect to see more unmanned vessels in the sea, improving offshore applications, making human jobs safer, and creating new efficiencies for organizations looking to optimize international trade.

Staying Connected at the Ski Resort

Getting connected at the ski resort, sounds like a dream come true. We can all probably admit that we often have an expectation for Wi-Fi availability at most places we go – our hotels, coffee shops, restaurants, shopping centers and more. Now, Wi-Fi is popping up in the places we would have ruled out for connectivity several years ago. Places like golf courses, campgrounds, marinas and ski resorts. This is catching on quickly. It is becoming a necessity to offer Wi-Fi at ski resorts and this is largely due to the fact that modern technology can allow it. The rise The Internet of Things (IoT) has opened the door to not only connectivity everywhere, but data that allows us to make better decisions. There are apps available today that allow skiers to compare lift line times and identify their location on a trail map. While the concept of complete connectivity is quickly catching on, there are still challenges to overcome. For example, Wi-Fi signals can be limited in strength; especially in snow-packed, rugged outdoor environments at ski resorts where temperatures are consistently well below the freezing-point. Connectivity at the Ski Resort Because the majority of their operations are outdoors, ski resorts require a rugged Wi-Fi option. This is true for all outdoor Wi-Fi applications – whether it’s a campground, marina, golf course or any other outdoor-based business. Each will face challenges due to varying landscapes and weather extremes. These businesses looking to bring connectivity to customers need to find a shorthaul solution that is rugged and secure enough to remain connected in the most extreme elements. They also need to enable high-speed, high throughput application solutions. In addition bringing connectivity to ski resorts – we’ve seen increased adoption of industrial Wi-Fi networks for security programs and disaster response. For the skiing industry, this may be beneficial to avalanche and rescue teams. With the added ability to track skiers on the mountain, as well as send targeted warning or emergency alert messages across the network, resorts would have an additional tool in the arsenal to facilitate safety measures across wide areas. Having reliable Wi-Fi during emergency communications, especially high-speed Voice, Video, Data and Sensor (VVDS) data transport, can help ensure secure lines of communication during emergency or disasters. Additionally, resorts can leverage the secure network from VVDS enabled Wi-Fi to increase resort security. The Rugged Solution Solutions are available today that will help ski resorts stay connected. These types of technologies are used every day in highly industrial environments like oil and gas, water/wastewater and even by the military. They function in the most remote, volatile, exposed environments. Now, they can be used in innovative ways to bring connectivity to ski resorts. Whether a ski resort wants to offer Wi-Fi to guests so they can better access their skiing apps and GPS, or if it’s to create a secure communication link for emergencies and rescue efforts – these solutions are designed to ensure connectivity. They offer robust, secure transport of VVDS information over rugged, shorthaul communication networks for edge devices and outdoor assets. They are specifically designed for outdoor Wi-Fi connectivity that has been tested and proven in extreme weather and environmental conditions.

Is Sensor-2-Server Technology the Next Big Wave for Oceanic Monitoring?

The National Geographic Society defines oceanography as, “an interdisciplinary science integrating the fields of geology, biology, chemistry, physics, and engineering to explore the ocean.”  A brief history of oceanography, laid out by the National Geographic  Society, begins with the first oceanographic studies completed by the H.M.S. Challenger Expedition from 1872-1876, which was the first voyage that collected data related to the oceanic environment. The more advanced forms of oceanography did not begin until World War II when the U.S. Navy studied the oceans to gain communication advantages across the Atlantic for submarine warfare. In the 1950s and 1960s, submersibles were introduced and ultimately became the technology that revolutionized oceanographic exploration. Modern technology has enabled more in depth exploration of the ocean. It offers tools to observe the environment, study the living beings living within it, and explore the unexplored. With the increasing adoption of the Internet of Things (IoT), it is safe to say that more innovation will continue to drive oceanic research and exploration as we are able to connect more sensors and devices to the equipment that helps us learn more about the vast and expansive oceans. IoT technology allows researchers to take a scientific approach to the examination of the ocean through recorded and analyzed data. Some of the technologies already in use today include, vessels and submersibles, observing systems and sensors, communication technologies, and diving technology. Sensor-2-Server Technology for Oceanic Monitoring As IoT adoption rapidly expands, and in many ways changes the way things work – researchers continue to find new and innovative ways to explore the ocean. Some technology manufacturers are offering Sensor-2-Server solutions (S2S) for monitoring and data collection. S2S is defined as intelligent communication that begins at the sensor level and targets servers for specific reasons. The concept of S2S is about creating intelligent transmission from a specific location back to the appropriate server with the appropriate intelligence to drive action for change. For oceanographic purposes, this type of technology unlocks the opportunity to incorporate more data points than ever before. Some Sensor-2-Server solutions offer platforms to host third-party applications in addition to creating the communication links for devices. This new class of wireless IoT communication solutions is starting to be adapted for oceanographic research today. Below are some real-life applications that leverage modern Sensor-2-Server technology: Communication with an ROV on the ocean over a distance of about two miles Vessel telemetry for units that operate in a variety of changing environments from quayside to middle of ocean Remote access to GPS stations in Alaska over approximately 13 miles to optimize the quality of data transfer for ocean mapping. Connecting remote coastal radar systems measuring ocean surface currents around Coral reefs during an upcoming experiment along the very remote NW Australian Coast. S2S technology will continue to lead to new and exciting ways for researchers to uncover some of the ocean’s mysteries, understand how it works, and learn the behavior of its creatures.

Robotics & IoT Merging Together

The Internet of Things (IoT) has made its appearance in a substantial number of industries, most recently manifesting itself in the the realm of robotics. IoT technologies and standards open the door for new robotic capabilities that are powered by cloud computing, communication with other robotic systems and sensor input from the environment around them.  Recent research has pointed to a new opportunity for robotics to operate beyond the scope of what was possible just a few years ago. As we look at a future of data and connectivity at every end point – from our cars, to our homes, to our businesses – it’s clear that we’ve just begun to scrape the surface of what is possible with the rapid expansion of IoT throughout the world. In a recent report, ABI research coined the, “Internet of Robotic Things (IoRT),” defining the concept, “where intelligent devices can monitor events, fuse sensor data from a variety of sources, use local and distributed ‘intelligence’ to determine a best course of action, and then act to control or manipulate objects in the physical world, and in some cases while physically moving through that world.”  The research certainly backs recent claims that robotics are going to leave a significant mark on the IoT industry. Take a look at the key statistics that Forbes recently reported on Robotics: 4% of developers are building robotics apps today. 45% of developers say that Internet of Things (IoT) development is critical to their overall digital strategy. 4% of all developers are building apps in the cloud today. RF Technology in the IoRT World As the entire technology landscape changes it is more important than ever for RF technology to adapt in order to meet new industry demands. Manufacturers in the hardened, wireless communication industry have taken note and set their eyes on all things IoT by developing Sensor-to-Server (S2S) communication solutions. Some of these wireless IoT communication solutions providers are offering platforms to host third-party applications in addition to creating the communication links for devices. This is an entirely new class of wireless IoT communication solutions that has the staying power needed in the midst of technology evolution. Robotic IoT Future Some companies using wireless S2S solutions, have already begun to incorporate IoRT into their networks. Real-life use case examples of robotics for IoT networks that are in the works today include: Semi-autonomous robotic geophysical surveying platforms for detection of unexploded ordnance. With an S2S communication solution, this use case will provide real time kinematic base station GPS corrections and combined geophysical data to a mobile command and control vehicle for concurrent advanced data processing by rear support group linked by MiFi or Satellite communications. A ‘ship-to-shore’ link for an ocean going wave-powered autonomous robot. As robotics systems adapt to the new technology landscape, they will increasingly integrate with IoT networks. With these new advanced robotics capabilities, businesses will see new opportunities for automation and efficiency to further advance operations and will be able to leverage this new technology for competitive advantage.

Industrial Communications and Security Go Way Back

Industrial communications and security have a long standing history. In 2016, industrial network operators can collect more data from geographically dispersed field assets than ever before. As we head towards fully connected systems through the Industrial Internet of Things (IIoT), communication technology manufacturers continue innovating and creating enhanced solutions that will meet the Big Data demands of today and the future.  Data has become one of the most valuable assets an organization can own.  It can help operators improve operational decisions, save manpower and improve employee safety by keeping them out of dangerous environments. Industrial Communications  Industrial communications networks have more access points than ever before and we will continue to see more IIoT devices in service as connectivity improves in challenging environments. The IP-based technology incorporated into Industrial IoT communiations make it easier to deploy and talk to sensors, but it also makes it easier for intruders to see and snoop on valuable data streams. Anytime we talk about the collection and transfer of large amounts of critical data, security becomes an important part of the conversation.  If you’re a manufacturer, you are probably nodding your head in agreement or maybe even thinking that is an obvious statement.  However, based on the major cyber-attacks that have occurred in industrial networks over the past decade it is clear that a security focus from design to deployment isn’t always the case. Take a look at this infographic, “A History of IIoT Cyber Attacks and the Future of Security,” to see just how many huge scale cyber-attacks have impacted a variety of industries. While the infographic offers insight into major IIoT security breaches we’ve seen in the past decade or so, it does not provide the entire picture of industrial communication technology history and security practices. It does not highlight the fact that industrial operations networks have been using communication devices for decades and many industrial systems have been “online” since well before 2007. In fact, wireless machine-to-machine (M2M) communication solutions have owned the command and control of field assets for decades. Looking Closer at Solutions Top-tier industrial communication solution manufacturers have been leveraging security to prevent cyber-attacks and vulnerabilities on data long before the first major breach identified in the infographic. For years, these manufacturers have used a variety of techniques beyond physically securing the devices, including frequency hopping spread spectrum (FHSS) based devices with security standards like TLS/SSL and basic AES-128 data encryption. Some communication technology providers created solutions that are trusted by the US military for secure mission critical data transmission and have been used for more than 20 years. If one thing is clear in the efforts to protect data over time, it is that a critical infrastructure project is only as reliable and secure as the technology serving it. Security will ultimately be the limiting factor on how much IIoT technology is deployed.  A modern operator striving for an IIoT network must look at SCADA security, the convergence of Operations Technology (OT) and Information Technology (IT), and make a thorough assessment of what will allow them to achieve a secure data communications network and where they want to be in this triangle.  As the industry has evolved, so have the security practices. But what hasn’t changed is that an operator looking to build an IIoT network must carefully select their technology and look for the solutions that are focused on security.

IoT Evolution Podcast Recap: Edge Computing Future

Edge computing has become a topic of hot conversation as the technology capable of supporting sensor-2-server data transport has matured. The realization of true edge computing is accompanied by a host of benefits, including real-time data transmission, maintenance needs and considerable savings for operational expenses. Is edge computing the cut-and-dry future? Ken Briodagh, editorial director with IoT Evolution, plays devil’s advocate on a recent podcast with FreeWave Technologies CMO Scott Allen. He asks, essentially, “If companies focus resources on the real-time data transport at the edge – sending small packages of data at a time in the interest of speed – are we losing the benefits of big data? Do we lose the information that big data sets can provide in terms of predictive analytics and, ultimately, machine learning if we discard bits and pieces of data at the edge that we’ve deemed irrelevant?” Listen to the podcast below for Allen’s response! Overall, edge computing has three main drivers: latency–our need to have the data in milliseconds; loss of communication–able to solve the factory problem without shutting down the entire plant; proximity–sensors in the field monitor the data back to the edge. Edge Computing Solution Depending on the industry, a mixed bag of both programmable and edge computing solutions is an answer to Briodagh’s question. In some cases, especially with the oil and gas industry, companies rely on a sensor-2-server stream of communication, where they need to have the information in real-time, and if there is a problem, be able to act locally and fix the issue before anything drastic happens. The network is a combination of radios communicating with sensors that pass the data to a gateway and up to a cloud system. The network uses only small data sets to transmit a continuous flow of intelligent, sensor-based information, optimizing bandwidth in situations where latency is crucial. Next for the Edge There will come a time when using edge technology will just become a regular line item expense needed to do business in this modern age. Some early adopters have already started using gateway systems as a cookie cutter roll-out for all future expansions. Many worry the cost of entry is still too high to integrate, even though the need for transmission is great. As our digital age grows, infrastructure complexity and the desire to implement the latest technology grow along with it. Altogether, edge computing is still in its infancy stage, so no one really knows what data  we deem irrelevant today will be vital tomorrow.

Women in Tech: Hedy Lamarr

It was back in 1941 when Hedy Lamarr, an Austria born actress, together with George Antheil co-patented a “secret communication system” which allowed radio control of torpedoes that could not be easily discovered, deciphered or jammed. Her secret: frequency hopping! Coordinated, rapid changes in radio frequencies would literally “hop” in the radio spectrum, thus evading detection and the potential of interference, in other words, being suppressed or jammed. Even though her idea was ahead of its time and not implemented in the U.S. until 1962, when it was used by U.S. military ships during a blockade of Cuba (after the patent had expired), it is now the basis for modern Frequency Hopping Spread Spectrum (FHSS) wireless communication systems. FHSS wireless systems are very resilient when it comes to impairments such as interference (deliberate or coincidental) and “jamming.” Other effects can be observed when wireless signals travel through space, such as the “multipath” phenomenon, simply because they use only very small amounts of radio spectrum at a time and don’t dwell (or remain) at that frequency long, instead “hop” to another frequency quickly. Statistically, chances are that the signal does not “land” at the interfering frequency, thereby successfully evading the jamming signal. This makes Denial of Service (DoS) attacks on FHSS systems very difficult, albeit not completely impossible. Information Pioneers – Hedy Lamarr Edition As part of BCS, The Chartered Institute for IT video series, Miranda Raison presents Hedy Lamarr for the “Information Pioneers” series and dives deeper into the history behind one of wireless communication’s leading ladies who, together with George Antheil, pioneered the beginning of a communication revolution. Hedy Lamarr would’ve been 101 years old this November.

Do You Have Intelligence at the Edge?

Smart devices have added a level of convenience to our lives that we couldn’t have imagined 20 or 30 years ago. Through applications we can manage our bank accounts, check email, listen to music, read the news, pay our bills — and that’s just the tipping point of what’s available today. Now, imagine a business being able to intelligently control the devices at the outermost edge of its communication network through third party applications that operate in a similar fashion to those used on our smartphones. With the Industrial Internet of Things (IIoT) emerging across markets, it is clear that we are heading toward a common goal of complete connectivity across a network – from Sensor-2-Server (S2S). The ability to collect data from any point in the network and transport it where it needs to go creates an opportunity for operational efficiencies driven by advanced data collection and analytics capabilities. Now, with the use of third party applications, it becomes easier to tie components together at the edge of the network and create actionable intelligence. ZumLink solutions are the industry’s first intelligent, programmable 900 MHz wireless network with the ability to connect third party applications. Think of ZumLink as the “smartphone” for industrial networks, allowing you to connect apps designed to meet demanding needs for collecting, protecting, transporting and controlling data from network end points all the way back to the server. Here are the specifics on what makes ZumLink unique: High Speed, Low Power, Long Range – 4Mbps Data Link Rate, 1 Watt output and 100-mile coverage area  Programmability – Supports Python and Java, third party applications –just like a smartphone Maximum Flexibility – Standard and user defined hop sets, sense before transmit, frequency hopping and single channel option and user channel masking Until Friday, you have a chance to win a network of ZumLink radios that will help you get a jump start on your future industrial communication technology solutions. Simply provide FreeWave with your use case example and why you should win. All entries must be received by August 19th. FreeWave will announce the winner on August 31st, selected based on submission (U.S. and Canada only). The winning network must be deployed by October 31st. In return for the free radio network, the winning candidate will be able to gain additional promotion of their installation and network implementation! Submit here for your chance to win: http://bit.ly/2awdmkC

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.