British Antarctic Survey Leverages Ruggedized Data Transport

British Antarctic

Antarctica inhabits a unique place in the human exploration mythos. The vast expanse of uninhabitable land twice the size of Australia has birthed legendary stories of human perseverance and cautionary tales about the indomitable force of nature. However, since those early years, Antarctica has become a rich research center for all different kinds of data collection – from climate change, to biology, to seismic and more. And although today there are many organizations with field stations running this data collection, the nature of its, well, nature still presents daily challenges that technology has had a hand in helping address. Can You Send Data Through Snow? British Antarctic Survey (BAS) – of recent Boaty McBoatface fame – has been collecting data from its field station network for more than 60 years. Over that time, BAS has become a global leader for polar science and polar operations, collecting data on sediments, ice cores, the polar atmosphere and the ever-changing ice shelves – all of which are vitally important for helping predict the climate of the future. To collect this data, BAS required a network that could reliably transmit it in what could be considered one of the harshest environments on the planet. This means deploying GPS equipment, motion and atmospheric sensors, radios and more that could stand up to the daily tests. In order to collect and transport the data in this harsh environment, BAS needed a ruggedized solution that could handle both the freezing temperatures (-58 degrees F in the winter), strong winds and snow accumulation. Additionally, the solution needed to be low power due to the region’s lack of power infrastructure. The Solution BAS found that FreeWave’s 900 MHz radios could handle this myriad of requirements. The organization deployed 19 radios across its network, each connected to a remote GPS station containing sensors that track the movement of the Brunt Ice Shelf near one of the primary research stations. The GPS sensors determine the Shelf’s position and dynamics before sending the data back to the station. There are several other specs that make the deployment of these radios operationally viable for British Antarctic Survey, but to find out more check out our case study with all the details: https://www.freewave.com/case-studies/british-antarctic-survey/!

Well-Pad Automation Through the CC1310 Wireless MCU

Oil companies use high-tech radios for production site automation in cool new ways. Competition in oil production can get pretty ugly, especially when the price of oil is low, as it has been for the past several years. To stay competitive against big players, smaller regional oil and gas companies are turning to well-pad automation practices to keep their costs low and their production reliable and steady. What is well-pad automation, you ask? Well, to put it simply, it’s the deployment of technology that monitors, measures and manages the production and storage of oil and gas at a well site or storage tank in real time. This technology includes sensors that measure pressure, temperature, flow, level and all sorts of other things that all need to work together in order for a well to produce, store or transport its product. Once these sensors are deployed, the next step is to add intelligence to automate certain functions that would otherwise require human intervention. Programmable logic controllers (PLCs) and remote terminal units (RTUs) are simple computing devices that automatically take action when certain conditions occur on the pad. But you thought this blog post was about fancy new high-tech radios – it is! Here’s where they come into the picture. Older radios transported sensor information from the well pad to an operations team, where they viewed the information and decided whether or not to take action. These radios generally transmitted at very low bandwidths (115Kbps-400Kbps), which severely limited the type and amount of data that could be transmitted. This limitation in many cases prevented companies from being able to take advantage of new automation technologies (like smart sensors and devices) that require more bandwidth. Today, companies like FreeWave Technology Inc. are leveraging technologies like TI’s SimpleLink™ Sub-1 GHz CC1310 wireless microcontroller (MCU) radio chipset as part of a new radio infrastructure that delivers much higher data rates. By combining the microcontroller, a highly optimized radio and an ARM® Cortex®-M3 48MHz application processor into one rugged, industrial-grade, low-power offering, well-pad automation can make a huge leap forward. These radio appliances can deliver data rates as high as 3.7Mbps over 20 miles in some cases, enabling oil producers to deploy more sensors and technologies that improve safety and operational efficiencies and reduce costs. Figure 1 below shows a picture of the FreeWave ZumLink Z9-PE IIoT Programmable Radio (IPR) with 512 MB of RAM and 1 GB of Flash. This device also runs third party and custom industrial applications.   Another cool thing about these radio appliances is that they are programmable. They come with an integrated circuit board (shown in Figure 2 below) equipped with an ARM processor; 512MB of RAM; 1GB of flash storage; and a Linux kernel with support for Python, Java, If This Then That (IFTTT) and many other programming languages. Deploying advanced intelligence into the sensor networks that run their production helps oil companies eliminate additional costs, gather and store more information, and engineer new applications that improve production and safety. Tank-flow management, intelligent security surveillance, data logging and pump shut-off are just a few of the applications that oil companies can deploy in these new networks. To learn more, feel free to check out the ZumLink IPR product page. More information on other products within the SimpleLink MCU platform is also available here. *This post was originally published on TI’s E2E Community blog, which can be found here.

The Wireless Oilfield

As the Industrial IoT (IIoT) drives connectivity everywhere, wireless technology has become a mainstay in the energy landscape. Modern oil and gas companies rely on wireless communication solutions to control, monitor and transfer critical data for the most critical field operations. As technology decision makers continue to seek new ways to connect the oilfield, they are inundated with options. However, if they desire networks that will remain relevant as technology rapidly changes, they need to be focused on finding wireless solutions that can handle modern data needs. Wireless I/O solutions In the oilfield, different applications have different needs. For example, many assets are operating in hazardous environments where explosive gas is present. The technology operating in these environments needs a C1D1 certification for safe operations. The good news is that there is wireless technology designed and certified to perform in these environments. C1D1 wireless Input/output (I/O) technology can perform to the standards that ensure both safety and connectivity for the modern oilfield. When wireless I/O is incorporated into small field networks, medium plant operations and/or large SCADA systems, operators can receive wireless sensor measurements, physical control and communications between remote controllers from a single device. In the simplest of terms, wireless I/O is wire replacement, where the wireless communications link emulates wire in an existing application. No changes are required to the system architecture. Rather, wireless links are used to transmit the same data that the physical wire once carried. With a C1D1 certification, wireless I/O solutions offer a much needed hard wire replacement for extremely remote assets in hazardous environments. Wireless Oilfield Applications As more sensors are added along the wireless oilfield, there are many different applications that can be pulled into the wireless network. New C1D1 wireless I/O communication technology also is designed to provide the communication link for the IIoT network in order to achieve the level of connectivity needed for today’s IoT driven-marketplace. There are a number of applications that can be leveraged by the wireless communication network including: Separator: monitoring of flow, high level alarm, pressures and temperatures Production tanks: C1D1-cerfied measurement and high level alarm Backhaul: data collection and transport from the wellhead to SCADA system Wellhead: pressure monitoring, including – casing, tubing and surface pressures. Additional applications include, flow, plunger lift, valve actuator, and arrival sensor Control Panel: wirelessly connect PLC/RTU/Flow computer to sensors, link to IIoT, I/O expansion Flarestack: monitor flares, temperature and thermocouple Chemical injections: monitor tank level and temperatures Compressor: monitoring of pressures temperatures and monitor/control on/off statuses. These are some of the many applications that can be connected with modern wireless technology. As the oil and gas industry continues to embrace wireless technology, special attention needs to be paid to the solutions that will still be relevant years down the road. A C1D1 certified wireless radio solution that connects to the IIoT network is an ideal solution that not only supports field assets, but is designed with the future of wireless communications in mind.      

Busting the Myths About FHSS for Industrial IoT

IT/OT convergence has shaken the way businesses operate from a networking, connectivity and communications perspective. As IT decision makers look to find technology that will support the needs of modern digital networks, it is easy to overlook Radio Frequency (RF) solutions. Frequency Hopping Spread Spectrum (FHSS) technology is a viable option that has been around for decades. With the right solution in place, FHSS technology is reliable and robust enough to get important data from the field back to the central office. With newer, high-speed and high-throughput options, it can be ideal for helping solve modern convergence challenges. FHSS technology is well-known for its use in OT networks in industrial settings, but the IT side might not be as familiar with the technology. There are a number of myths about FHSS technology that need to be clarified in order for an IT decision maker to understand its potential. Today we’re going to bust three big myths: Myth One: FHSS Technology is Not Secure Enough for Modern IIoT Networks 900 MHz FHSS technology leverages an unlicensed spectrum which has led to the misperception that it is vulnerable to jamming and DoS attacks. The reality is that the signal is constantly hopping in the spectrum and does not stay on a single frequency for long. This one of its greatest strengths and makes it much more difficult to jam. IT decision makers who are greatly concerned with security should also know that some manufacturers offer two layers of security. The first is the natural built-in protection from the frequency hopping and the second is 128 or 256 bit AES encryption. Myth Two: Crowded Spectrums Lead to Poor Coverage Network congestion is a long-standing misperception associated with FHSS technology. Operators are often concerned that performance could be affected in an unlicensed spectrum if too many devices are trying to use it at once. However, the frequency hopping nature of the technology actually serves as a strength.  The jumping allows the technology to identify the better channels, even in areas that are known for being noisy and congested. FHSS technology has been proven and trusted by the U.S. military for decades to perform in situations where lives are on the line. Myth Three: FHSS Technology is Best Suited for Industrial Environments Like Oil and Gas In oil and gas and military circles, FHSS is frequently used and widely known as a strong wireless communication option. However, the technology may not even be on the radar of an IT decision maker tasked with new responsibilities as the OT/IT divide closes. What IT decision makers need to know is that FHSS technology is also currently used in networks completely outside the scope of traditional industrial networking. Here are a handful of unique ways FHSS is currently being used: Oceanic Monitoring and mapping Auto and Boat Racing Testing for Electric Cars Plant Automation Asset Tracking in Healthcare Golf Course Communications and Golf Cart Monitoring Aquarium research A Good Fit FHSS technology fits nicely into the evolving technology landscape – especially when data needs to be transported from the access layer back to the business office. Despite the challenges that OT and IT teams face as they learn to work closer together, FHSS remains a proven, reliable option to help bridge the gap.

News Round-up: Wireless and Ethernet

As the Industrial Internet of Things (IIoT) drives the production of connected devices, wireless and Ethernet-based technologies have become an important piece of the connectivity conversation. Entire industries are making digital transformations and it’s changing the way businesses operate. There are billions of IoT devices in service and development continues to ramp up. Recently, we’ve seen several wireless and Ethernet technologies headlines in the news. Wireless and Ethernet News Is Ethernet Coming to the Network Edge? By David Greenfield | Published on @automationworld “We’ve tarBygeted a small scale, single-chip processing solution (to bring Ethernet to industrial edge devices) by reducing processor speed, memory and RAM size, reducing the interconnection complexity from processor to network interface, and reducing the pin count and complexity of the network interface,” said Weingartner. Essentially, “we’re bringing MAC into the PHY (the physical layer of the OSI model which connects a MAC to a cable), which is what Ethernet is all about. Doing this opens up possibilities not just for new implementations, but for brownfield applications as well.” Wireless Electric Cars About to Hit the Road By @robnikolewski | Published on @sdut “What’s called dynamic charging foresees a future where vehicles charge themselves as they drive. Using coils embedded in roads, EVs would refuel as they stay in transit, creating their own self-perpetuating electrical loop. It’s similar to the way some mobile devices get charged.” The Ethernet Ecosystem Today is Driven by Applications, not Speed Alone By  David Chalupsky | Published on @networks_asia “For many years, Ethernet evolution was characterized by the “need for speed” as networks and data centers sought higher and higher throughput. But over time, Ethernet has found its way into applications unforeseen by the developers of the original specification, resulting in a broad and varied Ethernet ecosystem. Today the desire to bring the advantages of Ethernet into new applications necessitates a new approach where the needs of the application are considered first and foremost in defining new Ethernet incarnations.”  Actualizing the Internet of Things Starts with Wireless By @robrueckert | Published on @TechCrunch “The most promising of wireless power technology seems to be radio frequency. With its apparent lack of serious problems and its unique strengths, radio frequency has the greatest long-term potential to become the market’s leading source of wireless power to fuel the Internet of Things. No significant evidence exists depicting radio frequency as posing a threat to humans. The human body consists mostly of water and radio waves do not transmit energy through water. Radio frequency is also highly configurable. Devices sending and receiving radio frequency power can easily be equipped with regulators, enabling control of how much power will be emitted and received.”

Network Management Solutions for IIoT

The shift towards digital technology solutions and the rise of the industrial Internet of Things (IIoT) have transformed operations for many organizations. Currently, there are a number of wireless communication solutions available that are specifically designed for IIoT, M2M and SCADA networks. These technologies monitor, collect and transfer critical data in challenging environments to support mission critical use cases. As technology continues to advance, Sensor-to-Server (S2S) technologies have emerged to support advanced data practices, such as predictive analytics. IIoT has not only increased the number of devices in the field, but has also brought the OT and IT departments closer together. This convergence is challenging for many businesses as they look to find technology that will meet evolving demands. IT, for example, needs better field visibility as industrial networks become more connected every day. This need has driven a strong demand for detailed, real-time information solutions that will support IT network operations. Having a network management system (NMS) at the access layer helps meet those needs and companies like E2E have begun to offer NMS solutions specifically for IIoT, M2M and SCADA networks. These networking solutions help overcome some of the major visibility issues from an IT perspective and are suitable for operation in challenging environments . FreeWave’s NMS Partnership FreeWave recently announced a new technology partnership with E2E Technologies. E2E’s Stingray Network Management System (NMS) will support FreeWave’s WavePro™ wireless communication solutions. Stingray is optimizable for IT professionals looking to manage individual components of a limited IoT or M2M communications system within a larger IT network management framework. Companies in energy, utilities, municipalities, government, oil and gas, and more will benefit from this solution as they now have a technology solution designed to help bridge the IT/OT convergence gap.

2017 IIoT Prediction Series, Part 4: Smart Cities Turn to Standardization

As 2017 kicks into full gear and a particularly interesting 2016 fades into the rearview mirror, we took a look around the IIoT landscape to see what this year might potentially have in store. We will be unveiling five IIoT-related predictions throughout this week and into next, so stay tuned and let us know what you think! On Tuesday, we started our predictions by looking at the potential development of Fog Computing at the Edge and its impact on cybersecurity. Wednesday, we predicted that the rise of IIoT applications will outpace consumer IoT apps. Yesterday, we wrote about the challenge facing IIoT businesses as the workforce ages and new skills are needed for the ongoing IT/OT Convergence factor.  FreeWave Predictions 2017 Throughout the last year or so, we’ve paid especially close attention to the development of Smart infrastructure. People tend to think of smart cars, smart appliances, smart houses, and smart cities in this context, but what we’re more interested in is the growth of the infrastructural mechanisms that make these “smart” applications a reality. Because we play in the industrial sector, the growth of Smart Cities is where we most notice the growth of this infrastructure. Some cities around the world, especially India, have invested heavily in the infrastructure necessary to create a Smart City. Other countries, however, have been slower to follow suit for a variety of reasons. Our Smart City Prediction With the rise of Smart City initiatives the 802.11 ah (HaLow) wireless networking protocol will over power Bluetooth in 2017 for critical infrastructure applications like traffic management, public safety, energy efficiency and public infrastructure design. By the end of 2017, millions of smart IoT devices will be deployed into networks that use the HaLow protocol and it will eventually become the standard for IIoT. The “Standards” Problem One of the main challenges to Smart City growth so far has been the reluctance for industry leaders to choose a single standard for connectivity. So far, HaLow has been considered one of the titans, but there is yet to be a move to make it the standard for further development. This WiFi protocol brings many benefits to the table, including its high speed data transmission and the early backing of IEEE. Bluetooth or HaLow? Nipping on the heels of HaLow is the emergence of Bluetooth 5. Where HaLow shines – high-speed data transmission rates for longer distances – Bluetooth 5 falls flat. But Bluetooth 5 has perks of its own: low energy needs means longer battery life for the devices that use Bluetooth 5, and, of course, the cost factor cannot be ignored either – Bluetooth 5 is much cheaper to implement. Additionally, where Bluetooth 5 is already up and running, HaLow is still being rolled out, and will continue to be for the foreseeable future. Smart Cities Need Bandwidth, but… They also need cost-effective solutions that can be rolled out today. Where the benefits outweigh the cost is most likely the side to which Smart City developers will fall. As urban areas continue to expand outward, the need for high bandwidth solutions will become more important, which would seem to favor 802.11ah in the long run. Stay tuned Monday for our final prediction!

2017 Analyst Predictions – Industrial IoT

Predictions can be enlightening as we round out the end of the year, and industry analysts covering the Industrial Internet of Things (IIoT) have begun forecasting what to expect in 2017. In the ever changing digital business landscape, companies need to keep a pulse on the technology and regulatory environments to have direction on where to focus their efforts. Over the past few years, IIoT has taken on the shared title of industry 4.0, as new ways of connecting businesses and consumers impact systems infrastructures and technology integrations across many, if not all. business lines. In honor of reigning in 2017 as a strong year for the industrial internet, we have dedicated this week’s round up to highlight some of the top IIoT analyst predictions in the coming year. Gartner Predictions: Surviving the Storm Winds of Digital Disruption  By  Daryl C. Plummer, Martin Reynolds, Charles S. Golvin,  Allie Young, Patrick J. Sullivan, Alfonso Velosa, Benoit J. Lheureux, Andrew Frank, Gavin Tay, Manjunath Bhat, Peter Middleton, Joseph Unsworth, @rayval, @DavidFurl, Werner Goertz, @JCribbs_Gartner, Mark A. Beyer, @Alex42Linden, @noahelkin, @nheudecker, Tom Austin, @mc_angela, Fabio Chesini, Hung LeHong | Published on @Gartner_inc “Digital business innovation creates disruptive effects that have a wide-ranging impact on people and technology. However, secondary ripple effects will often prove to be more disruptive than the original disruption. Digital strategists must actively identify secondary effects when planning change.” Gartner Also Suggests That its Time to, Harness IoT Innovation to Generate Business Value By @chetster | Published on @Gartner_inc “The Internet of Things is moving beyond concepts and trials, and has begun to deliver business benefits across a range of industries. Studying innovation and how early use cases have fared will help CIOs and IT leaders capture business value.”   Forrester Predictions 2017: Cybersecurity Risks Intensify By @AmyDeMartine, Jeff Pollard, @infosec_jb, @acser, @heidishey, Christopher McClean, @jz415, @merrittmaxim, @sbalaouras, Trevor Lyness, Peggy Dostie | Published on @forrester “The connected world has arrived; we live and work in it. In this new reality, the next 12 months will see battles rage that will determine the amount of control individuals have over their own data and right to privacy as well as the offensive and defensive responsibilities of our governments. This report guides security and risk (S&R) pros through five predictions for 2017 that highlight escalating ramifications of poor security hygiene and how to mitigate potential damage.”   Ovum 2017 Trends: Radio Access Networks By @sonixag | Published on @OvumICT “This is part of Ovum’s 2017 Trends to Watch series. This report looks at what Ovum believes will be the major trends next year when it comes to the radio access network (RAN) market.The RAN market remains a challenging area and the need for spectrum remains a constant concern. RAN vendors are looking for new growth areas, and everybody wants 5G and they want it now. All of these factors are driving market trends.”   IDC 2017 Forecast: Manufacturing Worldwide By @kimknickle, Simon Ellis, @hashtonIDC, Christopher Holmes, @jeffhojlo, @ivanoortis, @VeronesiLor, Jing Bing Zhang | Published on @IDC “This IDC study provides manufacturers with the top 10 predictions and underlying drivers that we expect to impact manufacturers’ IT investments in 2017 and beyond. Technology leaders and their counterparts in the line-of-business (LOB) operations can use this document to guide their IT strategic planning efforts. According to Kimberly Knickle, research vice president, IT Priorities and Strategies, IDC Manufacturing Insights, “Technology continues to reshape the relationship between business and IT for innovation and digital transformation. Manufacturers want to work smarter using digital technologies in their products and processes and throughout the value chain. Our predictions create a framework for IT and line-of-business executives to plan and execute technology-related initiatives in the year ahead.”   As we conclude our highlights this week, we should realize these predictions are just the tip of the digital iceberg anticipated for 2017. The future could see more intelligent technologies communicating in industry 4.0 with machines processing more data. We could also expect to finally dig deeper into our IoT connected understanding. All we can do is hold tight as the next corner of digital transformation unfolds.

Connected Traffic Management Systems

Connected traffic systems are the next push in our growing digital world. There is a massive opportunity to leverage modern technology for a variety of traffic applications. The rise of the Internet of Things (IoT) has led to advancements within many municipalities to optimize public transit, traffic management and public safety. As a result, cities around the country are looking to technology and connected devices to reduce congestion and improve traffic flow. Connected Traffic Systems Technology U.S. Commuters spend 14.5 million hours stuck in traffic every day. The Urban Mobility Scorecard from 2015 reported that commuters generally needed to allow 48 minutes for a trip that would take 20 without traffic. The report predicted that conditions would continue to worsen if dedicated programs, policies and projects are not expanded. From a public transportation perspective, many cities are dealing with outdated infrastructure that can lead to severe delays and transportation outages. Voters in San Francisco, for example, recently approved a measure for a $3.5 billion regional bond to update its aging BART transportation system. In addition to investing in and fixing ageing infrastructure, U.S. cities also aim to become smarter and prepare for the future by leveraging technology. The U.S. Department of transportation has recently offered nearly $65 million in grants to cities around the country that are working on advanced transportation initiatives. The grants support a number of projects including traffic signal technology to reduce congestion at street lights, transit trip planning technology and applications, ride-sharing services, and more. While the cities work on the ground, there are also efforts to improve air traffic congestion. AT&T recently announced that it is partnering with the National Aeronautics and Space Administration (NASA) to develop a traffic management system for drones. Sensor-2-Server for Traffic Management Sensor-2-Server (S2S) solutions offer reliable connectivity options for municipalities looking to fix traffic flow issues and create smoother traffic management. By leveraging S2S operations, the city or municipality can enable intelligent communications at the edge of the communication network, from the sensor at the traffic light back to a specific server, enabling advanced data analytics. Cities with outdated communication infrastructures, such as a T1 phone line for traffic control systems, can easily update their network with wireless S2S solutions. S2S technologies are created to perform in extreme weather, offering a real-time monitoring solution around the clock. The cost of operations is significantly reduced with S2S solutions and they deliver the connectivity needed for modern IoT networks. Some S2S solutions are equipped with the ability to introduce custom, third-party applications at the edge, which can help reduce costs and enable new automation capabilities. As cities throughout the U.S. embrace IoT and work to become Smart Cities, traffic management is a major initiative. While cities work to improve aging infrastructure, they can help improve traffic congestion by incorporating a traffic management system that can leverage data from an S2S network to optimize traffic flow.

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.