Emergency Response From Sensor-2-Server
Emergency response agencies are adding Sensor-2-Server (S2S) communication technologies to their tool belt, thus changing the way our local municipalities operate. As we head in the direction of a more connected world through the Internet of Things (IoT), we see increased efficiencies within our cities and local government operations. For example, municipalities can leverage S2S technology for monitoring and control of their traffic management systems to improve flow of traffic to support community growth or pain points within the local traffic infrastructure. These Smart City types of applications also extend into emergency response. Large scale emergency situations and natural disasters often lead to disabled or overloaded cell towers and disconnected Wi-Fi. When all forms of communication are severed, first responders face the challenge of conducting rescue efforts with extremely limited visibility into identifying which locations require immediate help and conditions of the affected locations. If local government or municipalities leverage Smart City applications to stay online during emergency and disaster recovery situations, response times increase, risk decreases and lives can be saved. A Sensor-2-Server (S2S) solution robust enough to maintain communications during worst case scenarios will provide a mission critical communication link that keeps responders connected. Further, solutions that support voice, video, data and sensor (VVDS) information can aid in complete, accurate assessment during the emergency as well as detailed follow-up after emergencies and disasters are over. Finding a New Solution for Emergency Response Secure wireless communications are a key component to successful emergency response and disaster recovery for Smart Cities. With technology specifically built for harsh outdoor, industrial locations and proven to perform under the most extreme environmental conditions, local governments and municipalities can create emergency response and disaster recovery protocols that would significantly reduce collateral damage. Wireless shorthaul communications solutions with robust Wi-Fi links support VVDS, giving responders a substantial advantage during emergency situations. In a situation where every moment counts, having that connection could make the difference in saving someone’s life. Benefits of Leveraging S2S Solutions with Emergency Response Agencies Functioning even when power outages are plaguing a city, there are a number of ways a Sensor-2-Server type of network can be leveraged by the local government: ⇒ Reduce Risks Significantly reduce the risk of injury for firefighters and first responders. By leveraging video, responders can examine and assess damage after a weather-related incident without having to enter unsafe buildings or areas. ⇒ Assess the Situation Streamline the post disaster assessment by first responders from all directions and relay critical information to headquarters. By leveraging voice and video capabilities responders get an accurate assessment of a situation from every angle and create a faster, safer evaluation than a manual process. ⇒ Increase Response Time When communication networks are down, emergency crews can leverage the secure wireless edge network. Emergency crews can respond faster because messages and instructions are relayed via VVDS rather than manually. ⇒ Protected Data Keep unwanted parties out of the network. Leverage secure encryption capabilities to prevent data hijacking and increase network security. Some solutions will offer a secure, dedicated channel for emergency communications that does not interfere with tactical plans. When a municipality becomes a Smart City, first responders can be highly effective and are better able to protect themselves from the dangerous situations they face. As S2S communications shape the future of municipal communication networks, voice and video can be incorporated into the network. With this new, rich data, emergency management teams can enhance their emergency response protocol and improve emergency planning.
Behind the Scenes: Airports Across the Country
Many of us have been in airports around the country a lot lately. Summer vacations are a time when families converge at our local airports, anxious to spend time with loved ones and get to their destinations for fun, relaxation and adventure. However, we tend to take for granted all that goes into running our airports, along with the safety and security required to ensure the smooth operation each airport requires. Plus, we generally only think about what is happening inside the airports, but the truth of the matter is, there is potentially more activity happening outside of the airport at any given time. From aircraft maintenance crews and air traffic controllers to airfreight handlers and runway security personnel, there is a slew of machines and people conducting airport operations outdoors that need to be coordinated and as efficient as possible. According to a 2010 report by the Bureau of Transportation Statistics, a total of 631,939,829 passengers boarded domestic flights in the United States that year. This averages to 1.73 million passengers flying per day. It’s mind-boggling to think how this number has increased since that time as it’s clear that general aviation airports of all sizes are an integral part of our National Aviation System. Many airports have aging facilities, shifting demands to accommodate the changes in the general aviation industry, and diminishing revenue sources. These trends coupled with limited staff and budgets have made it difficult to properly maintain the facilities beyond responding to immediate needs. Automator of Airports The automation of processes and industrial communications can help. Setting up an outdoor industrial wi-fi network is one way field managers at airports can ease the burden of maintaining a safe and efficient infrastructure. For instance, establishing a hardened and ruggedized commercial-grade wi-fi network around the perimeter of an airport not only creates a safe and secure enclosed zone, but, also provides a way for maintenance crews to monitor and ensure the overall outdoor field operations of the airport facility. This can be easily achieved through resilient wireless networks because they allow for easy and relatively inexpensive modification as outdoor airport infrastructures and policies change (which can be frequent). In addition, besides obvious benefits to airport maintenance crews, there are indeed FAA requirementsthat need to be adhered to for compliance – making it even more imperative that airport facility personnel find more effective ways of ensuring proper airport operations and safety procedures are maintained at all times. Some examples of how outdoor wi-fi networks can assist in a smoother, more automated airport infrastructure include: Establishing a communications link with all airport maintenance crew through VoIP, video and data so that all personnel are able to communicate with one another and send immediate notifications if/when needed – saving time, effort and money. Adhering to FAA mandates which require personnel to provide reports on outdoor lighting, runways, vehicles and the overall airport infrastructure three times per day. Great efficiencies can be obtained through automating these various tasks reducing the amount of time and labor needed to maintain, monitor and report these things. Installing communication devices on airport maintenance vehicles connects all of them so that personnel can notify proper authorities of outages through their tablets versus manually having to inform supervisors that action needs to be taken. These are just a few of the ways an industrial outdoor wi-fi network can help airports maintain a safe, secure and well-functioning infrastructure. So what will the future airports look like and how will they operate? If the current IoT landscape has shown us anything its that any manual process or operation that can be automated through the use of machines or smart devices eventually will be (automated). As airport field operations continue to be held to higher standards and increasingly rigid regulations, the faster they can adapt to the pressures of an on-demand economy, the better.