FreeWave Blog Series: The Intelligent Edge

Part 1: Novice App Dev – A Q&A with Greg Corey from FreeWave The Internet of Things (IoT) has changed the consumer world in ways no one ever imagined.  By placing intelligence in the IoT network, the “Thing” can do whatever we want it to do.  Now Industrial companies are seeking to take advantage of this edge-deployed intelligence in order to maximize profits, improve safety and streamline operations. In addition to the challenges IoT technology had to overcome such as cybersecurity, scalability and interoperability, Industrial IoT (IIoT) must also focus on reliability, ruggedness and more. FreeWave is uniquely positioned to understand and address all of these challenges. We have delivered world class IIoT platforms for almost 25 years to thousands of industrial and unmanned systems customers. With that experience, we’re now leading the charge to deploy intelligent applications at the edge of industrial networks and unmanned systems. In the second installment of “The Intelligent Edge,” we sat down with Greg Corey, FreeWave systems engineer, to talk about his new app – ZumDash – and the future of app development of the Internet of Things. FreeWave: Can you talk about how you got involved in IoT app development and what that means from an Industrial IoT perspective? Greg: I got involved with IoT app development when we [FreeWave] started the ZumIQ project. IoT app development revolves around developing software to interconnect devices, and there’s a huge need for that in the industrial space known as the IIoT. So, I started working with some graphical JavaScript-based environments like Node-RED, and I realized that this quickly allowed me to solve problems that were facing our customers. FreeWave: Are Node-RED and JavaScript the primary languages being used right now to develop those apps? Greg: Yes, mostly you’ll see a lot of Python stuff, a lot of Java, and hence JavaScript, and then you’ll see some stuff written in C as well, but, really, the web-based languages have taken off. People write apps in Java and PHP for the most part. And then Node-RED is a graphical frontend for JavaScript. FreeWave: Can you talk a little bit about the app that you developed for FreeWave – ZumDash – and where it resides within an IIoT network? Greg: So, FreeWave has traditionally made radio products where you just put data in and out of the system and that’s all it does. It’s just a complicated replacement for a physical cable. With the new ZumIQ platform, it allows us to add a lot of intelligence at the Edge of these networks where a radio is functioning much more than just a radio. It’s actually an application development environment. It’s an application platform. So, the app that I developed, I wanted to showcase the radio’s capabilities at the Edge of the network, and specifically, there’s a few other things I wanted to show. I wanted to show data storage: so, actually, it’s recording data on the radio itself. I wanted to show the display of that data in a dashboard format. I wanted to show communication, so the radio can still act as a radio and then you can have email alerts and other alerts based on data points. And then I wanted to show logic as well: If This Then That. So, to be able to read a sensor value and if it’s within a certain range to then take action on it. So, the app that I built was really meant to showcase those four things: data storage, dashboard, communication, and logic. FreeWave: So, for the storage part, how often are people trying to actually store data on those Edge devices as opposed to having them just be conduits for the data transmission? Is that a different way of approaching it? Greg: Yeah, it’s a different way of approaching it, and what it allows you to do is free up network capacity. So, if you’re continuously sending and receiving data from the field to a central source, you’re using throughput and bandwidth on that network. With some of these Edge networks, it could be in something that’s moving on the ground and there’s not a very high antenna height; it could be a really noisy environment; there could be a lot of metal obstructions in the way. Sometimes, in the industrial realm, the networks aren’t as rock solid as you would want them to be, or there’s limited capacity for connectivity. So, by moving some data storage operation to the Edge, we can then free up our network capacity for other resources. FreeWave: So then from there are you able to run analytics on that Edge device to filter out some of the data that you don’t need? Greg: Yeah. Iin ZumDash there’s a frontend on it that I use. Using the frontend, you can remotely log into the radio, you can examine every piece of data the radio has recorded, and you can do that graphically. Then, you can build charts based upon that data, and then you can also export to Excel. So, all the data that resides on the radio in the MySQL database is available for analytics remotely, on demand. FreeWave: Does this have a dual track function where you can store data and look at it later, but you can also get the data in real-time if you need it? Greg: Yes, and also, how often the app records data to the database is configurable. You can look at configured intervals. The quickest time I can do at the moment is five seconds. So, every five seconds it’ll record data from six different sensors. FreeWave: Why was the dashboard display an important part of this app? Greg: It allows easy access to data. Let’s say there’s a problem and you want check on the status of a device. I don’t want to have to look through logs or something like that. I want that data easily displayable. So, adding the dashboard allows anybody to be able to log in and

Microgrids Gaining Mainstream Traction

While “going off the grid” is not a new term, microgrids are finding new footholds in a changing utilities industry. Recently, more and more cities and states are turning to microgrids not only as highly effective ways of increasing energy resiliency, but also as pragmatic and cost effective strategies for shifting population densities and energy consumption behaviors. Below, we’ve gather some of the top recent headlines on the changing microgrid landscape. Microgrids In New Applications Microgrids have long been viewed as an excellent tactic for supplying power to rural areas and island communities. However, recent data shows that microgrids may be expanding. This article from the Motley Fool, notes that governments and correctional facilities are turning to micrograms as viable options for emergency backup power. Another area where microgrids are seeing growth is in use for growing suburbs and rural areas. In the past, power companies has to build costly new transmission lines to service growing population areas, lines which may only be used during peak demand for a few hours a year. By leveraging microgrids, energy companies can build cost effective solutions for dealing with rare power consumption spikes. Communities Turn to Microgrids for Energy A recent article from Electric Light & Power notes that there are developing plans to build 13 microgrids across the state of New Jersey to increase the areas energy resiliency and better prepare the state for emergency situations. The effort, spearheaded by New Jersey Board of Public Utilities President Richard S. Mroz, has been prioritized in the wake of the devastation caused by Hurricane Sandy, during which many areas were left without electricity and running water for weeks on end. One of the proposed microgrids in downtown Trenton would connect several important government buildings, helping keep the cities most essential resources up and running even during emergency situations. Building a Carbon Free City In the stretch of land between the city of Denver and its airport, a new town is being built that will rely solely on a microgrid for power — and it will be completely carbon free. The city, called Peña Station Next, will rely primarily on solar energy and is receiving large financial support from the city of Denver. As reported in this article from The Scientific American, the city will rely “mainly on solar energy, a king-sized lithium-ion battery and various energy efficiency schemes” for its power. Will Battery Tech Change Microgrid Strategies? Batteries are getting bigger — so what does that mean for microgrids? As noted in this article from Teslarati.com, Neoen and Tesla recently announced the creation of a 100MW/129MWh battery adjacent to the Hornsdale wind-farm in South Australia. One of the claims Tesla had in building the battery is that the company could make money by providing off-the-grid backup power. According to the article, however, this might not be so simple. Bruce Miller, a principal consultant for Advisian, says the 80-minute discharge time for Tesla’s system isn’t in line with 10-megawatt- and 20-megawatt-hour systems that could produce $2.1 million a year from supplying backup energy. Brooklyn is On-Board with Microgrids Brooklyn, the dense suburb of New York City, is one of a growing list of major population centers to explore microgrids. As noted in this article from Green Biz, Brooklyn is exploring a strategy where a virtual web of buildings whose owners can buy and sell power to each other using blockchain technology to manage the transactions. Currently, the program has hundreds of participants signed up, and users will ultimately be able to control their participation through the use of an app.   With more governments and power companies exploring the promise of microgrids, it may only be a matter of time before a microgrid is a viable primary or emergency energy option for many. Where do you see microgrids growing next?

International IIoT Perspectives: Smart Cities

The Industrial Internet of Things (IIoT) is, at times, hard to pin down. The stronger the technology has gotten, the broader the applications have become, affecting everything from energy, to smart cities to manufacturing, and in the process, blurring the line between traditional consumer and industrial markets. Interestingly, in the United States, much of the Industrial IoT advancements have come from the private sector – oil and gas, utilities, precision agriculture, etc. International IIoT, however, has seen real advancements coming from cities – smart cities, that is. Smartest Cities in the World A 2015 article from Forbes provided a list of the top five smartest cities in the world based on a number of factors, including environmental monitoring, smart traffic management, data usage and creative tech applications.  Barcelona topped the list, with New York City, London, Nice (France), and Singapore rounding out the top five. In each instance, the use of smart technology improved quality of life, efficiency, and better overall functionality. Of course, there are myriad factors to consider when evaluating a city’s “smartness,” but considering how many moving parts – literally and figuratively – that it takes to create a smart infrastructure, the breadth of application is impressive. Barcelona’s comprehensive wired network drives an infrastructure that is constantly aggregating, transmitting and analyzing data for all kinds of things: The boxes are no regular electricity meters. They are fine-tuned computer systems, capable of measuring noise, traffic, pollution, crowds, even the number of selfies posted from the street. They are the future of Barcelona, and in some sense they are the future for all of us too. The hard drives are just one piece of what is “unusual” on this street, in fact. Cast your eyes down, and you might spot the digital chips plugged into garbage containers, or the soda-can-size sensors rammed into the asphalt under the parking spaces. The paragraph above not only highlights the often hidden aspects of smart cities – sensors, hard drives, boxes – but also the sheer magnitude of the data being collected from wherever possible. The technology that powers that data collection lies in the actual communication networks, which are powered by an array of RF, cellular and WiFi connections. Today, many of the devices that are responsible for collecting the data from the source – the access layer – are capable of hosting third-party, proprietary applications that can filter and transmit data in specific packages, turning Big Data into Smart Data. Lately, London has focused on green energy and environmental progress. The city launched an initiative to become a zero-emission city by 2050 with a combination of electric vehicles and public transportation. Sounds familiar, right? The actual mechanisms driving that initiative are not necessarily ground breaking: reduce combustion engines on the road, encourage people to use public transport. However, the technology has finally started to catch up. With smart traffic monitoring capabilities, public transportation can run more efficiently, keeping to strict schedules. Additionally, driverless vehicles can perhaps help lead a transportation infrastructure devoid of human-caused accidents, opening the road systems and, again, leading to greater efficiency. Smart Cities, Smart World Of course, the two examples above come at a high level. There are significant technologies driving the actual implementation of smart city devices, but the key factor is that the leaders of the respective cities understand the need for a stronger, smarter infrastructure. Many other cities are catching up – India often pops up with smart city initiatives, which is a fascinating case study based on the economic disparity of the country. Still, the drivers of the international IIoT goals often point to the development of smart cities as an ideal outcome based on the continued growth of connected technology.

Utilities & IIoT: The ‘Perfect Storm’ Meets the Revolution

In early 2017, John Kennedy at SiliconRepublic declared the Industrial Internet of Things (IIoT) the ‘perfect storm’ – a convergence of technologies with the capacity to create new economic benefits based on operational efficiency. On these blog pages, we’ve covered many different facets of industries adopting intelligent communication technologies likes sensors, programmable radios, and powerful analytics tools, but one industry in particular seems poised for the greatest upheaval: utilities. Many industry experts are pointing at utility markets as poised for revolution.  So, what happens when the ‘perfect storm’ meets the revolution? Critical Infrastructure Transformation Given the way the human population is dispersed in the United States (and abroad), cities play a huge role in driving the growth of IIoT technologies in utilities. Water and wastewater treatment plants are perhaps one of the most important (and overlooked) pieces to modern infrastructure. Without these plants, after 1-2 uses, most of the water in North America would be unusable. Instead, companies are using sensors and other connected monitoring devices to create smart data that informs decision making, eliminates variables, and improves effective responsiveness. Similarly, the electric grid has seen significant transformation as well. In the era of the smart grid, we now have the ability to monitor grid activity more closely, deploy electricity more efficiently based on usage spikes, and allow consumers to track their own energy usage. The residual effect of this tracking is, perhaps, an increased awareness of how we use energy on a daily basis and could lead to better individual conservation efforts. Alternative Energy On The Rise And speaking of conservation efforts, with the ability to use energy more efficiently, alternative energy has exploded as viable alternatives to our traditional resources. Wind power has grown into a consistent source of energy, but for years, operators needed a better way to monitor the energy systems. Today, IIoT technology not only allows better monitoring, but provides real-time management capabilities for operators. The name of the game is efficiency, and if the operations are efficient, then the usage can be efficient as well. Business Convergence Since utility companies are now better equipped to understand when and how resources are being used or deployed, they can streamline some of the day-to-day operations by building a network of smaller solutions that are specifically designed to meet niche needs, creating more business opportunities for both traditional and alternative utility providers. Although many doomsday scenarios point to increased automation as the death of the worker, with a greater diversity of solutions, the economic impact might actually provide more jobs instead of fewer. Relying on the traditional model of the last half-century, however, does not. Ultimately, we are still looking at an industry that is right on the cusp of revolution. Utilities have, historically, been slightly slower to respond to technology overhauls at a high level, but with the added efficiency and financial benefits that accompany IIoT adoption, companies are rethinking old strategies and pushing into a new frontier – confronting the ‘perfect storm’ head-on to ensure the best possible landscape once the dust settles.

Microgrids Promise Smart Industry Possibilities

The rise of microgrids, while not inevitable, is a natural next step in the progression of smart grid technology. As automation, data collection and transport, and monitoring capabilities have grown into standard smart grid technologies, companies, military bases, small towns and even cities are tapping into the possibilities for self-sustaining microgrids. What are Microgrids? Microgrids are, essentially, self-contained local energy grids. In most instances, they are attached to the greater grid (macrogrid), but can disconnect if necessary for autonomous operation. In other scenarios, they are local grids powered by alternative energy means. For instance, according to a 2014 article from Navigant Research, Alaska leads the world in microgrid deployment due to the small communities that rely almost exclusively on local energy – in some cases, 100 percent renewable energy. The viability of these kinds of energy distribution networks was not always apparent. For years, the United States has relied on a connected grid system that could be prone to huge shutdowns or security risks. As the technology has improved, microgrids that can disconnect from the macrogrid and function autonomously have opened huge possibilities for smart cities, the Industrial Internet of Things (IIoT), and more. Smart Cities Powered by Microgrids Smart cities rely strongly on the backbone of wireless technology. Imagine a scenario in which a city’s electricity grid went down, killing the wireless networks and effectively bringing any connected technology to a grinding halt. It could mean the shutdown of public transit, water and wastewater treatment facilities, electricity, vehicles, stoplights – the list can go on. Any IoT or IIoT systems would shut down. However, with a smart city set up with a microgrid concept, if a part of the macrogrid went down, microgrids could disconnect and allow normal functionality without service shutdowns. If hackers or other security concerns hit the macrogrid, microgrids can disconnect and protect the system from further threat. And, in many cases, microgrid technology is driving the rise of alternative energy and energy independence. Renewable Energy and Microgrids One of the main problems facing renewable energy has always been storage. How can renewable energy sources create excess energy and store that energy for future use in case of macrogrid failure? What cities and small towns are finding out is that by building a renewable energy system connected to a microgrid, they can effectively develop net-zero communities that don’t have to rely on energy storage in the instance of macrogrid failure. As these technologies have matured and become implemented in different use-case examples, the possibility for more intricate and complex systems is apparent. As the IIoT continues to adopt microgrid technologies and practices, industry practices will mature, creating greater efficiency both operationally and with regard to energy usage and distribution. The future of smart cities and a stronger connected infrastructure could be poised to accelerate along with the growth of microgrid applications.

Smart Grid: Overcoming the Challenges to Increase Efficiency

Recent research estimates that the Smart Grid will be a $120 Billion industry by 2020. As Industrial IoT (IIoT) drives digital transformation for utilities, there are a fair share of challenges and opportunities facing the Smart Grid industry today. To keep up with rapid growth and new technology that is shaping the utility markets in particular, Smart Grid decision makers must continue to improve efficiency. This allows the organization to leverage better data and make smart business decisions that align with an increasingly connected infrastructure. The Convergence Challenge In utilities markets, the IT/OT divide is rapidly shrinking, revealing significant challenges between the two groups. OT and IT each come to the convergence line with functional and operational differences, yet the changing technology landscape makes it impossible to avoid the inevitable meshing of the two formerly disparate organizations. As Smart Grid decision makers adjust to this shift, strong communication between teams will be essential –  as well as careful selection of technology. For example, if utilities can work to integrate their legacy systems on the OT side with the more modern IT systems through a carefully selected communication solution, the Smart Grid will become more efficient, leading to better business decisions, as well as improved system operations and overall visibility. Going Digital IT/OT convergence, coupled with the new digital landscape has also driven Smart Grid organizations to reorganize under IT and address new technology challenges from a jobs perspective. Utilities are facing an ageing, traditional workforce on the OT side coming head-to-head with a new digital-centric workforce on the IT side. For Smart Grid organizations, it is essential to find the balance between hiring new technology savvy talent and nurturing existing staff. IoT will continue to drive automation, as Smart Grid decision makers either upgrade their legacy systems or figure out how to connect existing ones. We may see an increase in privately funded secondary education programs designed to create a more skilled workforce. If decision makers embrace the inevitable shift to digital, they will not only see the impact on efficiency, but they will stay competitive in an IoT driven market. Smart Sensor Boom IoT sparked a digital technology shift that resulted in the proliferation of Smart Sensors. Now utilities are able to monitor and transfer critical data from any asset – from the network Edge back to the central office. The demand for sensors hasn’t slowed – research is pointing towards continued and substantial growth in the Smart Sensor market between now and 2021. As sensors bring connectivity to more endpoints than ever before, utility decision makers are able to obtain detailed data for Advanced Metering Infrastructure (AMI) and Distribution Automation (DA) networks. With rugged wireless solutions, the sensor data is readily available in real-time for IT decision makers. The unrestricted access to data from all network endpoints forces decision makers to shift their focus from Big Data to Smart Data – the data that matters most to the business. It also drives the need for real-time analytics in order to streamline operations. This not only simplifies the convergence issue, but it drives Smart Grid efficiency. There are many factors contributing to the efficiency of the Smart Grid. While some initially present themselves as challenges, increasing connectivity and digital transformation give decision makers better data, connect more field assets and enable more opportunities to benefit the business.

Energy and Excitement at DistribuTECH 2017

This week we attended DistribuTECH 2017 with several thousand of the leading minds in technology, education and innovation for utilities, Smart Grid and municipalities. We had many great conversations about the direction of Industrial IoT (IIoT) and the all-encompassing digital technology shift. At the FreeWave booth we led many demonstrations of our latest technology. We also shared how our fellow attendees can achieve smart data at the Edge. Here is a small snapshot of the excitement and action from the show: FreeWave at DistribuTECH We had a lot to share at DistribuTECH this year. In addition to providing product demos at our booth, we just launched several important company, product and partnership announcements. Here’s the run-down on what we launched this week: New IIoT Products & Two New Partnerships Introduced at DistribuTECH Zumlink Z9-C and Z9-T Radios: FreeWave introduced the Zumlink-Z9-PE last Fall, but now it brings the next generation, high performance platform to market. ZumLink is the underpinning of the company’s go-forward IIoT strategy for IIoT and embedded radio applications. The Z9-C and Z9-T deliver high speed Frequency Hopping Spread Spectrum (FHSS) functionality in a radio module that is half the size of a credit card. FreeWave and Systech application partnership: Together with Systech, we announced an industrial Tank Level Control application that resides on and executes from FreeWave’s ZumLink IIoT Programmable Radio for edge networks. The new application features an easy-to-use “ITTT (If This Then That)” process control programming interface that will control analog, digital and RS485 sensors linked to the ZumLink programmable radio.  The FreeWave ITTT App is designed for a user-friendly experience and requires no previous programming knowledge or practice. Technology partnership with E2E Technologies: E2E is a comprehensive solutions provider specializing in communication architecture design, implementation and network management. E2E’s Stingray Network Management System (NMS), supports the full array of FreeWave’s industry-leading wireless communication solutions and is optimizable for IT professionals looking to manage individual components of a limited IIoT or M2M communications system within a larger IT network management framework. The New FreeWave We officially unveiled a new look and website that reflects our move to the next generation of the industrial IoT: The Programmable Edge and Fog Computing. The new FreeWave visually projects our future-focused mission to help organizations around the world connect and gain valuable intelligence from devices – even in the most challenging of locations and conditions – anytime, anywhere in a secure, reliable fashion. This week has represented several major milestones for FreeWave, and launching it all at DistribuTECH was the perfect platform for sharing both our news and the future direction of FreeWave. What do you think about the new FreeWave website?

Friday Top 5 IIoT News Roundup

It’s time to nominate our Friday top five Industrial IoT news articles of the week. Much like the weather in Boulder this week, we couldn’t decide on just one vertical focus, so we cast a wide net of IoT topics. In this week’s roundup, you’ll find a splash of fog computing, manufacturing, smart grid, security and overall IoT updates. Dive in and see if you agree with our picks. Don’t miss the Friday bonus at the end of this short roundup. Making fog computing sensors clearly reliableBy @Patrick_Mannion | Published on @ednmagazinehttp://www.edn.com/design/sensors/4442602/Making-fog-computing-sensors-clearly-reliable“As fog computing rolls in, the onus is upon designers to figure out how much intelligence should be at each node of the system for optimal performance. This implies then that sensors will need to start being more intelligent, with some level of built-in processing, storage, and communications capability.”  Army needs wide-area electro-optical sensors for manned and unmanned aircraftBy @jkeller1959 | Published on @IntelligentAerohttp://www.intelligent-aerospace.com/articles/2016/08/ia-wami-sensors.html“Army researchers are interested in moderate-resolution persistent-surveillance electro-optical sensors that operate during the day and at night over large areas to detect vehicles and people on foot. Researchers want to develop a sensor that consists of an imaging sensor, as well as a storage and processing unit.”  Five essential IIoT DefinitionsBy @MMS_MattDanford | Published on @MMSOnlinehttp://www.mmsonline.com/blog/post/5-essential-iiot-definitions-“The idea is not just to exchange and collect data, but to act on that data to make things better. (One commonly cited example is a “smart” thermostat.) IIoT is the same concept applied to industry. Examples range from “smart” buildings and power grids to “smart” transportation networks. IIoT might initially take the form of a machine tool status monitoring system.”  What makes a grid smart?By David Shadle | Published on @tdworldmaghttp://tdworld.com/grid-opt-smart-grid/what-makes-grid-smart“My point, however, is that the critical consideration is not the number of sensors, controls or data storage components we add to our system when we decide to move ahead with smart grid applications. The focus also needs to be on mastering the integration of these systems, many times across traditional IT and OT lines, to allow them to achieve their potential for intelligence.”  Top ten security predictions through 2020By @Gartner_inc | Published on @Forbeshttp://www.forbes.com/sites/gartnergroup/2016/08/18/top-10-security-predictions-through-2020/#4d8ba8073cbe“Through 2018, more than 50% of Internet of Things (IoT) device manufacturers will not be able to address threats from weak authentication practices.”  Friday Bonus! FreeWave Technologies announces partnership with Solis Energy By @SolisEnergy and @freewavetech | Published on @SolarNovus http://www.solarnovus.com/freewave-technologies-announces-partnership-with-solis-energy_N10256.html “Both companies are excited about the partnership and are already working through high profile opportunities to take advantage of the growing demand for smart systems and industrial connectivity.”

An Industrial IoT Anniversary

Wow, what a year! This post marks the one year anniversary of publishing Industrial IoT top news, trends and highlights, and we wanted to dedicate a recap post to our favorite articles throughout the past year. In particular, a lot of attention has been paid to the happenings in precision agriculture, oil and gas, unmanned systems, the smart grid, public utilities, manufacturing, machines and machine learning, fog computing, big data, sensor technology, wireless technology and cybersecurity, to name a few. Read on for the top 10 articles we’ve posted since last August and make sure to see the special bonus at the end! Precision Ag: Big data is precision agriculture’s best tool to feed the world By @LuxResearch | Published on @AgProfessionalhttp://www.agprofessional.com/news/big-data-precision-agriculture%E2%80%99s-best-tool-feed-world“Big data can be the most flexible tool for increasing the efficiency of food production through precision agriculture – a quantified approach to cultivation that uses sensing, input modulation, and data analytics to enhance the efficiency of agriculture.”  Oil and Gas: In the digital oil field, “no wires” is a no-brainerBy Zach Wertenberger @WPXEnergy | Published on @WorldOilhttp://www.worldoil.com/magazine/2015/september-2015/features/in-the-digital-oil-field-no-wires-is-a-no-brainer“Wireless technology plays an integral part in the day-to-day operations of virtually every industry on the planet. However, if you spent your time visiting most of the world’s oil fields, you wouldn’t believe that.Despite being a rather obvious fit with the inherent nature of the oilfield services sector (OFS), wireless I/O has been adopted by producers at a slow pace, with most continuing to rely upon miles and miles of fault-prone wire to connect onsite control centers with wellsite instrumentation.”  Smart Grid: Wireless Lifts Focus on Grid Resiliency By Brad Gilbert @freewavetech | Published on @POWERGRIDmaghttp://www.elp.com/articles/powergrid_international/print/volume-21/issue-6/features/wireless-lifts-focus-on-grid-resiliency.html“Industrial Internet of Things (IIoT) networking technology and wireless Machine-to-Machine (M2M) communications solutions are critical to the daily operations of an increasingly connected and industrial world. With a greater dependence on providing reliable and secure high-speed connectivity to personnel, smart devices, machinery and many other geographically dispersed assets, electric utility operators require powerful, yet flexible, communications solutions for their business demands.”  Utilities: Wastewater Treatment: Out of Sight, Out of Mind (Thanks to IIoT)By Scott Allen @S_Allen_IIoT | Published on @Ulitzerhttp://scottallen.ulitzer.com/node/3527211“Water is a crucial piece of any city’s – or country’s – infrastructure. The United States is fortunate to have some of safest drinking water in the world, for a number of reasons, one of which is its many water and wastewater treatment facilities.”  Manufacturing: Bringing Smart Technology to Old Factories Can Be Industrial-Size ChallengeBy @mcoc | Published on @wsjhttp://www.wsj.com/articles/bringing-smart-technology-to-old-factories-can-be-industrial-size-challenge-1465351322“It’s a tantalizing vision: Bright and shiny factories where robotic arms and conveyors never break down and production goals are never missed—all thanks to internet-connected sensors that monitor machine health and respond to the slightest supply or logistics hiccup.”  Machine Learning: 10 Ways Machine Learning is Revolutionizing ManufacturingBy @LouisColumbus | Published on @Forbeshttp://www.forbes.com/sites/louiscolumbus/2016/06/26/10-ways-machine-learning-is-revolutionizing-manufacturing/#3f10cd992d7f“Machine learning’s core technologies align well with the complex problems manufacturers face daily. From striving to keep supply chains operating efficiently to producing customized, built- to-order products on time, machine learning algorithms have the potential to bring greater predictive accuracy to every phase of production.”  Fog Computing: Why IoT Needs Fog ComputingBy @BanafaAhmed | Published on @bbvaOpenMindhttps://www.bbvaopenmind.com/en/why-iot-needs-fog-computing/“The Internet of Things (IoT) is one of the hottest mega-trends in technology – and for good reason , IoT deals with all the components of what we consider web 3.0 including Big Data Analytics, Cloud Computing and Mobile Computing.”  Sensors: The Army Wants to Implant Body Sensors into Combat SoldiersBy @tjenningsbrown | Published on @vocativehttp://www.vocativ.com/342014/army-body-sensors/“In the near future, American soldiers might all be implanted with a sensor before going to battle.The United States Department of Defense is interested in monitoring the health of soldiers in real-time. But wearable health trackers have faults and limitations. That’s why the Army Research Office and Defense Advanced Research Projects Agency have awarded $7.5 million to San Francisco-based Profusa to develop tissue-integrated health-monitoring sensors for service members.”  Wireless Tech: Industrial Wireless RevolutionBy Soliman A. Al-Walaie @Saudi_Aramco | Published on @ISA_Interchangehttps://www.isa.org/intech/20151001/“Wireless technology is an essential business enabler for the automation world. It has gained rapid acceptance in many industrial sectors because of its cost effectiveness, reliability, fast deployment, and flexibility. Over the past four decades, ultrahigh frequency (UHF) radios have been widely used for long-range supervisory control and data acquisition (SCADA) connectivity in the oil and gas and power and utility sectors.”  Cybersecurity: Navigating Industrial IoT risk and complexityBy @EStarkloff | Published on @AMDMaghttp://www.aerospacemanufacturinganddesign.com/article/amd1015-industrial-iot-complex-systems/“As massive networks of systems come online, they will need to communicate with each other and with the enterprise, often over vast distances. Both the systems and the communications need to be secure or millions of dollars in assets will be put at risk. One example of the need for security is on the smart utility grid, which is on the leading edge of the IIoT.” Bonus! Eliminate the cost of  your next IIoT deployment Now is the time to brave the digital transformation in your industry while you continue to future-proof your systems. All you need to do is submit a use case for your radio network for a chance to win a next generation industrial wireless IoT solution. All entries must be received by August 19th. FreeWave will announce the winner on August 31st chosen based on submission (US and Canada only). The winning network must be deployed by October 31st. In return for the free radio network, the winning candidate will be able to gain additional promotion of their installation and network implementation! Submit here for your chance to win: http://bit.ly/2awdmkC. Learn more about ZumLink.

IoT Top News: Distribution Intelligence

According to the U.S. Department of Energy, distribution intelligence refers to the part of the smart grid that addresses utility distribution systems – meaning the wires, switches and transformers connecting the utility substation to both the utility company and the end customer. These systems are designed to drastically improve the demand response times and overall efficiency of transferring electric power, thus enabling a fully controllable and flexible distribution system and giving field technicians the actionable knowledge to troubleshoot problem areas faster. As utility providers continue to move towards a digital and connected enterprise, the prospect of a self-healing power distribution system becomes extremely valuable – especially as electric power consumption continues to rise globally. That’s way this week’s round up is dedicated to distributing intelligence across one of the most mission-critical infrastructures on the planet – the power grid. State of Distribution Intelligence, per a Recent Smart Grid Report A smart grid survey of 70 U.S electric cooperatives found that, regardless of the challenges most have found a way to start incorporating smart grid technology across the board. Zpryme and the Rural Smart Grid Summit (RSGS) report that, “Nearly all electric cooperatives have some sort of smart grid effort. Many are at thestage of deploying multiple applications (31%) up from 21% last year. Pilot projects are also growing from 8% last year to 16% this year.”   We Now Have Hourly Data on the US Power Distribution System The U.S. Energy Information Administration (US EIA) can now collect data on electric supply, demand and flows on an hourly basis. CleanTechnica informs us that, “EIA’s U.S. Electric System Operating Data tool provides nearly real-time demand data, plus analysis and visualizations of hourly, daily, and weekly electricity supply and demand on a national and regional level for all of the 66 electric system balancing authoritiesthat make up the U.S. electric grid.”   Distribution Intelligence Starts with Proper Training India’s National Smart Grid Mission (NSGM) with USAID announced they will begin a series of utility personnel training programs designed to help educate workers on smart grid functionality and design. The Business Standard revealed, “The government has taken several proactive steps towards grid modernization, including the establishment of a Smart Grid Mission to plan and monitor the implementation of policies and programs related to Smart Grid activities in India.”   Cyber Attack Vulnerability in the Power Grid? We have all heard about a few of the big cyber attacks that have affected some big companies, but many don’t realize an attack on the electrical infrastructure could be crippling to our society. The Energy Collective unveiled a quiz to dispel some myths about the state of cybersecurity in the power grid. “Minimizing the risk is not just about training a network IT team. It’s about running a comprehensive and continuous scan of operational technology (OT)—the programmable logic controllers, the mobile devices, the supervisory control and data acquisition systems (SCADA), etc.—and then coordinating OT and IT teams with risk officers and crisis management experts to form a cohesive front capable of responding to an industrial cyber incident.” Perhaps the notion of distribution intelligence systems can help address and alleviate some of these concerns.   Most utilities are only starting on the road to true distribution intelligence, but the market is expected to boom in the coming years. With the advent of industrial IoT technologies and new regulatory factors, we could realize distribution intelligence in our power grid sooner than later. I hope you have enjoyed our weekly round up on distribution intelligence, and please be sure to leave your comments and questions below. BONUS ARTICLE The round up above is all about the smart grid and how to make it more efficient and resilient. Ever hear of a smart city? Smart cities are connected cities, and they work in conjunction with everything from IoT sensors to open data collection and smart streetlights to provide better services and better communication. Teena Maddox from Tech Republic wrote a great round up piece on six essential technologies that make the smart city of the future a reality today. Give it a read!  

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.