Is Sensor-2-Server Technology the Next Big Wave for Oceanic Monitoring?

The National Geographic Society defines oceanography as, “an interdisciplinary science integrating the fields of geology, biology, chemistry, physics, and engineering to explore the ocean.”  A brief history of oceanography, laid out by the National Geographic  Society, begins with the first oceanographic studies completed by the H.M.S. Challenger Expedition from 1872-1876, which was the first voyage that collected data related to the oceanic environment. The more advanced forms of oceanography did not begin until World War II when the U.S. Navy studied the oceans to gain communication advantages across the Atlantic for submarine warfare. In the 1950s and 1960s, submersibles were introduced and ultimately became the technology that revolutionized oceanographic exploration. Modern technology has enabled more in depth exploration of the ocean. It offers tools to observe the environment, study the living beings living within it, and explore the unexplored. With the increasing adoption of the Internet of Things (IoT), it is safe to say that more innovation will continue to drive oceanic research and exploration as we are able to connect more sensors and devices to the equipment that helps us learn more about the vast and expansive oceans. IoT technology allows researchers to take a scientific approach to the examination of the ocean through recorded and analyzed data. Some of the technologies already in use today include, vessels and submersibles, observing systems and sensors, communication technologies, and diving technology. Sensor-2-Server Technology for Oceanic Monitoring As IoT adoption rapidly expands, and in many ways changes the way things work – researchers continue to find new and innovative ways to explore the ocean. Some technology manufacturers are offering Sensor-2-Server solutions (S2S) for monitoring and data collection. S2S is defined as intelligent communication that begins at the sensor level and targets servers for specific reasons. The concept of S2S is about creating intelligent transmission from a specific location back to the appropriate server with the appropriate intelligence to drive action for change. For oceanographic purposes, this type of technology unlocks the opportunity to incorporate more data points than ever before. Some Sensor-2-Server solutions offer platforms to host third-party applications in addition to creating the communication links for devices. This new class of wireless IoT communication solutions is starting to be adapted for oceanographic research today. Below are some real-life applications that leverage modern Sensor-2-Server technology: Communication with an ROV on the ocean over a distance of about two miles Vessel telemetry for units that operate in a variety of changing environments from quayside to middle of ocean Remote access to GPS stations in Alaska over approximately 13 miles to optimize the quality of data transfer for ocean mapping. Connecting remote coastal radar systems measuring ocean surface currents around Coral reefs during an upcoming experiment along the very remote NW Australian Coast. S2S technology will continue to lead to new and exciting ways for researchers to uncover some of the ocean’s mysteries, understand how it works, and learn the behavior of its creatures.

IoT Evolution Podcast Recap: Edge Computing Future

Edge computing has become a topic of hot conversation as the technology capable of supporting sensor-2-server data transport has matured. The realization of true edge computing is accompanied by a host of benefits, including real-time data transmission, maintenance needs and considerable savings for operational expenses. Is edge computing the cut-and-dry future? Ken Briodagh, editorial director with IoT Evolution, plays devil’s advocate on a recent podcast with FreeWave Technologies CMO Scott Allen. He asks, essentially, “If companies focus resources on the real-time data transport at the edge – sending small packages of data at a time in the interest of speed – are we losing the benefits of big data? Do we lose the information that big data sets can provide in terms of predictive analytics and, ultimately, machine learning if we discard bits and pieces of data at the edge that we’ve deemed irrelevant?” Listen to the podcast below for Allen’s response! Overall, edge computing has three main drivers: latency–our need to have the data in milliseconds; loss of communication–able to solve the factory problem without shutting down the entire plant; proximity–sensors in the field monitor the data back to the edge. Edge Computing Solution Depending on the industry, a mixed bag of both programmable and edge computing solutions is an answer to Briodagh’s question. In some cases, especially with the oil and gas industry, companies rely on a sensor-2-server stream of communication, where they need to have the information in real-time, and if there is a problem, be able to act locally and fix the issue before anything drastic happens. The network is a combination of radios communicating with sensors that pass the data to a gateway and up to a cloud system. The network uses only small data sets to transmit a continuous flow of intelligent, sensor-based information, optimizing bandwidth in situations where latency is crucial. Next for the Edge There will come a time when using edge technology will just become a regular line item expense needed to do business in this modern age. Some early adopters have already started using gateway systems as a cookie cutter roll-out for all future expansions. Many worry the cost of entry is still too high to integrate, even though the need for transmission is great. As our digital age grows, infrastructure complexity and the desire to implement the latest technology grow along with it. Altogether, edge computing is still in its infancy stage, so no one really knows what data  we deem irrelevant today will be vital tomorrow.

Securing Assets with Outdoor Wi-Fi

The video surveillance market is anticipated to grow to $42B by 2019. Many industries today are using video monitoring as part of their physical security efforts to protect assets.  As the Internet of Things (IoT) is increasingly adopted by more industries, careful consideration must be made when leveraging Sensor-to-Server (S2S) solutions for video-based security applications.  From a technology perspective, IoT is beneficial for video security because it enables more data collection to drive intelligent business and security decisions that will better protect assets. However, with more sensors and devices connected to an IT network comes increased exposure for cyberattacks. It was inevitable that IoT would cross over into the physical security space, but the idea of security devices connected into an IoT network is concerning to many security professionals. In 2015, HP reported that up to 70 percent of IoT devices are vulnerable to cyberattacks. Any intelligent communication that is leveraged in an IoT environment must be designed with security in mind and have the ability to protect the network against cyber-attacks. Without ample security in the environment, companies risk severe consequences such as compromised data or denial of service. Outdoor Assets Protected Some outdoor shorthaul, Wi-Fi-based S2S networks are now designed to securely monitor and transmit voice, video, data and sensor (VVDS) information for asset monitoring and control. Additionally, any industry looking for an outdoor network robust enough to provide Wi-Fi connectivity may also benefit from these outdoor Wi-Fi solutions. From emergency communications to municipalities, industrial networks to golf courses or campgrounds, and more, there are numerous use cases where Wi-Fi is beneficial for connectivity and also for high-speed shorthaul communications needed to enable VVDS data. In IoT environments there are sensors on every single asset, constantly pulling data, so they need to make sure that security features are part of the technology’s design. For the operator seeking outdoor Wi-Fi to connect physical security devices and enable video monitoring, it is important to be familiar with the technology they are selecting. The Wi-Fi networks best suited for outdoor environments will have a rugged design with proven reliability in extreme environmental conditions. When the right security measures are in place, these solutions can ensure that data is protected through a variety of means including encryption, authentication, virus and intrusion protection, and by being physically tamperproof. Although robust, outdoor Wi-Fi can provide the connectivity needed for VVDS applications, but it needs to be able to withstand and prevent cyber security attacks. When the right technology is selected and enabled, asset protection can be enhanced through video. How are you protecting your assets?

IoT is for Automotive

The Internet of Things (IoT) has made an appearance in just about every industry (including automotive) that uses automation and has opened the door for the automation of pretty much anything and everything. Today, there are more devices than people and by 2020 there is expected to be 26 Billion – 50 Billion internet connected devices being used throughout the world. If one thing is true – and if the staggering stats above are any indication – we’re headed towards a fully connected world at a very high speed. Think about everything we can do now that wasn’t possible just a few years ago. We can lock our doors and shut off the thermostat from an app on our phone. At the push of a button, we can buy laundry detergent and have it shipped to our home. Industries with geographically dispersed and remotely located assets can cost-effectively add sensors and smart devices to every single network endpoint – to automate systems and drive intelligent business decisions locally and from afar. Racetracks are the next place IoT is surfacing, while automobiles with infotainment systems (connected by the IoT) continue to fill the streets. Autonomous Automobiles In the tech world, you’ve probably seen industry buzz and research data that verifies the reality of autonomous (or at least semi-autonomous) vehicles commonly traveling our roads in the near future. In fact, a few of the most innovative car manufacturers have already released vehicles with some autonomous features. If anything is for sure it is that the driverless car is much more than a fantasy today– there are people working to develop these vehicles right now. In the meantime, IoT has already begun to leave its mark on the automotive industry. So, what are some real life examples of unique ways that IoT communication solutions are being used in the automotive industry today? The Racing Industry The auto racing industry can automate many systems and processes for drivers and also generate data to support real-time decision making with IoT communication solutions. In one use case, IoT technology enables video data and high speed connections through a point-to-point system. With the data made available to drivers, they are able to adjust their racing strategy in real-time and make smarter decisions that decrease risk and save time. Electronic Car Testing For one electronic car manufacturer, IoT communication solutions are being used for engine testing and maintenance by using real time kinematics (RTK) base station communications to improve data and correlation. What Helps Drive the IoT for Automotive? Sensor-to-Server (S2S) communications have emerged as an essential solution for IoT networks in a variety of industries from industrial settings like oil and gas, to environmental monitoring, to the automotive industry. S2S solutions that are designed specifically for industrial-grade IoT networks, offer high speeds and extended distance connectivity via RF technology that can also support third-party applications. These solutions meet the demanding needs for collecting, protecting, transporting and controlling data from network end points all the way back to the server. As the world around us becomes more connected on a daily basis, we’ll continue to see new innovations released in many different marketplaces. In the automotive industry, IoT is leading to the inevitable release of autonomous vehicles. We can expect to see S2S communications play an increasingly important role for auto manufacturers looking to improve innovation and connect the network devices that were previously not connected.

IoT Weekly Roundup

The IoT weekly roundup is designed to share the latest and most interesting news from the past week. As the industrial and consumer IoT space continues to heat up, we decided to uncover some very unique IoT applications that many didn’t even know existed. As the connected world continues to advance in the emerging digital age, virtually every facet of our lives is now being impacted by the IoT. In this week’s addition of IoT weekly roundup, we explore M2M, sensors, automation, drones and IoT language. Dive in and enjoy this week’s highlights! Weekly Roundup of News How M2M and IoT enable new data-intensive applications By @dhdeans | Published on @TTech_News “During the last couple of years, machine-to-machine (M2M) technology has become an integral part of the services offered by global telecom providers and a significant revenue stream for M2M app specialists. They’ve developed comprehensive offerings, designed to reduce costs and increase efficiency.”   Sonar Mapping Sensors Help Understand Where Life Can be Found Underwater By Brooks Hays | Published on @UPI “New maps charted using sonar sensors have revealed the importance of ‘marine snow’ to the distribution of biomass on the ocean floor. Until now, mapping the ocean floor’s terrain, as well as distribution of marine snow and biomass, has proven difficult.”   Rail and Production Technology Parallels When it Comes to Automation By @DJGreenfield | Published on @automationworld “Explaining the IoT trend in rail, Weatherburn said that IoT is increasing interest in greater connectivity for operations optimization reasons. It’s also driving a move away from proprietary protocols and toward greater use of standard Ethernet. He noted that this is particularly true in rail when it comes to the delivery of communications and entertainment for the railway customer, pointing out that the rail industry is looking to carry both sets of data over standard Ethernet.”   Indie Sci-fi Film Shot Entirely by Autonomous Drones By @trentlmoore | Published on @blastr “Drone cameras are being used in just about everything nowadays, from sports coverage to emergency response, but what happens when you shoot a movie entirely from the sky?” The connected IoT is spawning a new vocabulary By @pmcfedries | Published on @IEEESpectrum “A big chunk of the Internet of Things consists of wireless transceivers combined with sensors, which can reside in appliances, devices, clothes, machinery, buildings—just about anything physical. Of course, the phrase ‘wireless transceiver combined with sensors’ is unwieldy, so such a node of the IoT is called a mote (short for remote).”   As we conclude our IoT weekly roundup, we hope you enjoyed learning about all the new applications and insights related to the powerful force of the Internet and connected technologies. Now go out and see what other IoT applications you can uncover!

Outdoor Wi-Fi Solution in Your Future?

Is an outdoor Wi-Fi solution in your future? Modern Sensor-to-Server (S2S) communication networks call for high-speed solutions that support massive amounts of data collection, control and transport. Today, industrial organizations are experiencing high demand for voice, video, data and sensor (VVDS) information in wireless outdoor networks. The challenge is finding Wi-Fi networks that can ensure connectivity in outdoor environments that are often volatile and unpredictable. The good news — robust, secure outdoor Wi-Fi hotspot platforms designed for shorthaul communications enable a variety of data collection options that can withstand the harshest outside elements. Reputable outdoor Wi-Fi networks can leverage multiple networking protocols and services. They are designed to meet the needs of enterprise-scale communications across a wide range of critical infrastructure industries like oil and gas, utilities, mining, municipalities, perimeter security, disaster recovery, and outdoor recreation. Keep in mind this is just snapshot of the industries that can benefit from Wi-Fi – there are numerous applications in just about any outdoor Internet of Things (IoT) network. Outdoor Wi-Fi | Real-life Scenario Recently, an electric power company based out of North Carolina needed to transition the Direct Load Control (DLC) switches for its residential load management program. The transition affected 275 air conditioning (AC) units across two rooftops at a residential senior living community. WavePro (WP201) shorthaul point-to-point and Wi-Fi platform units were used to enable the transition. In this instance, Wi-Fi was leveraged to increase the Load Management System’s (LMS) effectiveness by creating two-way communications to switch monitoring and control, instead of the previous one-way paging system that was in place. A local internet service provided communications from the LMS to a rooftop Internet Point of Presence (PoP). Additional solutions, including Wi-Fi enabled controllers and Wi-Fi access points (four WavePro Units) were selected for the installation.  The WavePro units were configured to solve three communication requirements in the Wi-Fi network: wireless communications between the controllers and a WP201; wireless communications between the four WP201s on the two rooftops; and communication between one WP201 and the single Internet PoP. The completed Wi-Fi solution enabled real-time communication between the LMS and each of the HVAC controllers on the two residential towers. The energy company can now effectively manage and confirm power curtailment events in real time. Win a WavePro Network You have a chance to win your own WavePro high-speed outdoor Wi-Fi network. Simply provide your application needs and tell us why you should win. Move fast —the contest ends this Friday, September 30. WavePro Features: IP67 rating to withstand extreme environmental conditions Advanced dual-band 2.4 GHz and 5.8 GHz capabilities that can cut through noise and congestion with band steering Self-discovery and self-healing mesh networking guarantee reliability Up to 1.3 Gbps broadband speeds deliver real-time Voice, Video, Data and Sensor links (VVDS™) Enter now: http://bit.ly/2czghui

Who Needs Rugged, Outdoor Wi-Fi Networks?

When we think about Wi-Fi, we tend to lean towards the idea of connections that allow us to access our mobile devices. With a Wi-Fi connection we can stream videos, access our apps, check email, work and basically manage our digital lives. In non-traditional settings, the need for outdoor Wi-Fi connectivity is increasing, but it is accompanied by some unique challenges. Outdoor Wi-Fi  Connectivity Industries that operate mostly outdoors are finding a greater need for Wi-Fi connectivity. Campgrounds are providing Wi-Fi as both an amenity and as a tracking and booking tool for managers and campers alike. Golf courses have deployed industrial-scale Wi-Fi networks to monitor irrigation, golfers and other assets throughout a course, and marinas are using Wi-Fi networks for both communication and vessel management needs. There has also been a strong uptick in the use of industrial Wi-Fi networking for security programs and disaster response. Companies can use  high-speed Voice, Video, Data and Sensor (VVDS) data transport as building blocks for a security network capable of real-time monitoring. These Wi-Fi solutions are especially ideal for video monitoring, as they provide the bandwidth necessary to transport large amounts of data. Disaster response has also been an ideal application for industrial-scale Wi-Fi. Often times, cell networks can get knocked out during environmental disasters, effectively eliminating a critical component for communication. Today, organizations can deploy these Wi-Fi platforms on vehicles or other response assets that can enable communications in emergency or disaster situations. For any industry with outdoor operations, assets will be exposed to the worst natural elements – extreme heat, freezing temperatures, heavy snow, strong wind, dust storms and more. The challenge is finding a shorthaul, Wi-Fi solution that is rugged and secure enough to withstand the elements, but also advanced enough to enable new types of high-speed, high throughput application solutions. Rugged Wi-Fi Communication Solutions There are solutions designed for robust, secure transport of VVDS information for the edge devices in industrial communication networks. These rugged, shorthaul communication networks are specifically designed for outdoor Wi-Fi connectivity and have proven reliability in extreme environmental conditions. These types of solutions are ideal for oil and gas, utilities, mining, power plants, municipalities, disaster recovery or any other type of industrial applications. They also suit innovative deployments at golf courses, marinas, campgrounds and other settings that require outdoor Wi-Fi connectivity. How would you like to have Wi-Fi connectivity for your own outdoor networks? FreeWave just launched a new contest and the winner will receive their own network of rugged, outdoor Wi-Fi solutions. Enter Today! Contest Closed Enter today for a chance to win FreeWave’s award-winning WavePro WP201shorthaul and Wi-Fi solution. Contest entrants must provide a high-level account of the application of the WavePro, along with a description of the need for the platform. Winners will be announced at the close of the entry period. To enter the contest, please visit http://go.freewave.com/wavepro-network-giveaway.  Submissions are due by September 30.

Thinking Outside the Box with Sensor-2-Server Applications

When we talk about Sensor-2-Server (S2S) applications, we tend to lean towards examples of common industrial communication networks for industries like oil and gas, utilities and municipalities. These application solutions typically incorporate the transfer of data from edge devices back to a specific server for use cases such as pump and tank monitoring or SCADA systems. However, as Machine-to-Machine (M2M) communications transform alongside the adoption of the Internet of Things(IoT), the types of applications that require connectivity at the edge are virtually endless. If we step back and look at the big picture, it is clear the entire landscape of technology is changing. With these changes we foresee the decline of standalone RF technology. Decision makers need Big Data in to make intelligent decisions that will transform their business operations and save them time and money. S2S communication networks are designed to address this challenge by driving intelligent transmissions from a specific location back to the appropriate server with the necessary intelligence to drive action for change. As technology evolves to meet industry demands, RF technology must adapt to meet new needs. We’re already seeing this happen in the industrially hardened, wireless communications industry. Some wireless IoT communication solutions providers are offering platforms to host third-party applications in addition to creating the communication links for devices. Sensor-2-Server Solution Along with this widespread technology change, we have begun to see new and exciting ways that modern RF technology solutions can be leveraged in an S2S network. Here are some nontraditional real-life examples of S2S applications: S2S communications to connect satellite communication dishes in remote locations where there is little to no cell coverage. The solutions extend communications and create a single POC for all of the remote locations. Monitoring cold storage food at distribution centers for a large US Supermarket chain where the cold storage warehouses are 500 feet X 500 feet and are located several hundred feet away from the monitoring room. RTK base station communications to improve data and correlation for an Electric Car manufacturer. Remote access to GPS Stations for improved data transfer in order to complete ocean mapping. Irrigation control on golf courses. For most industrial organizations there is a clear push towards complete connectivity from the sensors at the edge of the network all the way back to the central server. We often talk about data collection for familiar applications in oil and gas, utilities and smart cities. However, the reality of today’s technology transformation is that any industrial communication network, regardless of the industry, will likely need to connect its edge devices and eventually program its edge through third party applications in order to take the most cost effective approach and drive intelligent operational decisions.

Smart Golf Courses = A Hole in One!

Smart golf courses are coming to a green near you. A modern day golf course requires many things, including real-time monitoring for irrigation and pump systems, automated vehicle location capabilities for carts and players, and the ability to provide employees with the internet connectivity necessary to manage the sprawls of the course itself. As a result, golf course managers are turning toward some of the cutting edge Internet of Things solutions on the market to meet that demand. As far as preferred pastimes go, golf ranks relatively highly for young and old alike. In fact, according to the National Golf Foundation, there are more than 15,000 18-hole golf courses throughout the United States. The American Society of Golf Course Architects estimates that a full-size golf course would need up to 200 acres of usable land, which means that courses in the U.S. take up at least three million acres. By comparison, that’s nearly three times the size of the Grand Canyon National Park. With that in mind, the management of golf courses is a minor feat in advanced agricultural practices and logistics. Smart Golf Course Solution For one Colorado course, the smart golf course solution to its connectivity conundrum lay in the deployment of an industrial-scale Wi-Fi network capable of handling communication, accessibility and maintenance needs. Course managers selected a dual-band, mesh networking platform that provides Wi-Fi coverage in the necessary areas, and with the help of the provider, set up a network that strategically positioned the platforms so that devices and sensors could remain connected via the mesh networking capabilities as they moved from place to place. However, any outdoor Wi-Fi network does come along with its challenges. For example, another factor that golf courses need to consider when determining the best networking option is the weather. Although most courses are situated in areas that don’t typically draw extremely cold temperatures, many are consistently faced with hot or humid climates that can knock networks offline as the communication platforms succumb to the elements. The last thing any course manager wants is to have their communication network fail, especially if that impacts their customer experience. Adopting ruggedized outdoor networking and communications solutions means being confident that the platforms are designed to function without failure – even in areas with extreme weather events or consistently hot temperatures. Additionally, to ensure that the data being collected from irrigation and pump systems is being delivered in real-time allows grounds teams to monitor and predict when the systems are in need of maintenance, or when certain areas of the course are in greater need of water than others, for instance. Today, grounds crews can track this data via handheld devices that can quickly aggregate and analyze data, rather than spend time manually checking each individual service point. Although modern golf courses often look pristine to players and observers alike, upkeep and ongoing service requires constant attention. As these courses begin to deploy more advanced networking systems to become smart in its communication and monitoring practices, the ability for courses to streamline workflow and maintenance needs will only continue to grow.

Friday Top 5 IIoT News Roundup

It’s time to nominate our Friday top five Industrial IoT news articles of the week. Much like the weather in Boulder this week, we couldn’t decide on just one vertical focus, so we cast a wide net of IoT topics. In this week’s roundup, you’ll find a splash of fog computing, manufacturing, smart grid, security and overall IoT updates. Dive in and see if you agree with our picks. Don’t miss the Friday bonus at the end of this short roundup. Making fog computing sensors clearly reliableBy @Patrick_Mannion | Published on @ednmagazinehttp://www.edn.com/design/sensors/4442602/Making-fog-computing-sensors-clearly-reliable“As fog computing rolls in, the onus is upon designers to figure out how much intelligence should be at each node of the system for optimal performance. This implies then that sensors will need to start being more intelligent, with some level of built-in processing, storage, and communications capability.”  Army needs wide-area electro-optical sensors for manned and unmanned aircraftBy @jkeller1959 | Published on @IntelligentAerohttp://www.intelligent-aerospace.com/articles/2016/08/ia-wami-sensors.html“Army researchers are interested in moderate-resolution persistent-surveillance electro-optical sensors that operate during the day and at night over large areas to detect vehicles and people on foot. Researchers want to develop a sensor that consists of an imaging sensor, as well as a storage and processing unit.”  Five essential IIoT DefinitionsBy @MMS_MattDanford | Published on @MMSOnlinehttp://www.mmsonline.com/blog/post/5-essential-iiot-definitions-“The idea is not just to exchange and collect data, but to act on that data to make things better. (One commonly cited example is a “smart” thermostat.) IIoT is the same concept applied to industry. Examples range from “smart” buildings and power grids to “smart” transportation networks. IIoT might initially take the form of a machine tool status monitoring system.”  What makes a grid smart?By David Shadle | Published on @tdworldmaghttp://tdworld.com/grid-opt-smart-grid/what-makes-grid-smart“My point, however, is that the critical consideration is not the number of sensors, controls or data storage components we add to our system when we decide to move ahead with smart grid applications. The focus also needs to be on mastering the integration of these systems, many times across traditional IT and OT lines, to allow them to achieve their potential for intelligence.”  Top ten security predictions through 2020By @Gartner_inc | Published on @Forbeshttp://www.forbes.com/sites/gartnergroup/2016/08/18/top-10-security-predictions-through-2020/#4d8ba8073cbe“Through 2018, more than 50% of Internet of Things (IoT) device manufacturers will not be able to address threats from weak authentication practices.”  Friday Bonus! FreeWave Technologies announces partnership with Solis Energy By @SolisEnergy and @freewavetech | Published on @SolarNovus http://www.solarnovus.com/freewave-technologies-announces-partnership-with-solis-energy_N10256.html “Both companies are excited about the partnership and are already working through high profile opportunities to take advantage of the growing demand for smart systems and industrial connectivity.”

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.

Did you find what you were looking for?

Please let us know if you didn’t find what you were looking for so we can help make the site better for you.