Technology’s Impact on Air Quality Control Monitoring
At this very moment, wildfire season is currently underway in North America, and since the start of this year alone, more than 27,000 wildfires have consumed nearly two million acres according to the National Interagency Fire Center (www.nifc.gov). Though many people hear the word “wildfire” and immediately picture a forest in California, the reality is these natural disasters are prevalent across the country. Wildfires are everywhere The Verge, a technology news website, announced recently that roughly 56% of homeowners in the United States face some sort of wildfire risk in the upcoming decades. Bottom line: wildfires are becoming more prevalent and costly every day, and these fires are affecting more than half the population and significantly changing our quality of life. Just a few decades ago, we didn’t have the technology to prevent or predict changes in the surrounding air quality, but now we do, and through it, we can create a better world. Today’s technological advancements allow us to be proactive rather than reactive when it comes to our overall health and safety. By leveraging sensor technology, we have a better chance of predicting and preventing significant changes in the environment, like a drastic shift in air quality before a wildfire begins. This insight allows us to make better decisions based on intentional insights, and our increased access to data provides us with the right information to better control our surrounding environments. Technology is powerful, and this power can and should be used to our advantage. One of my favorite ways to witness the power of technology transforming real-world issues is by exploring the ways sensor technology has a tremendous impact on air quality control monitoring. Today, internet of things (IoT) technology and satellite are the best tools for early detection and prevention of wildfires. Our approach to air quality control Believe it or not, air quality has as much impact on the world as the daily temperature. With climate change causing drastic shifts in the environment, it’s important that we pay close attention to the quality of the air we breathe, as it affects our overall quality of life. As you know, trees play a critical role in our ecosystem, so we must be very intentional and proactive about protecting the forests around us. This is where sensor technology makes a big difference. With a small machine, we can now track and predict changes in the environment and our surrounding air quality, which ultimately helps us control, prevent and predict conditions that lead to wildfires. At FreeWave, we provide autonomous sensors that are strategically placed in remote locations to track and record relevant data metrics such as temperature, humidity, wind, direction and particulate matter. These readings help industry experts know what’s in the air and how the air is changing. Once this data is collected and transmitted to the cloud, we are then able to analyze it and provide alert and proactive responses where needed. We have created a single pane of glass approach, where anyone with access can log into a portal and see in real-time what is happening in the areas surrounding their deployed sensors. The interesting thing about our sensors is that they are fully powered by solar energy, and satellite signals transmit the recorded data. We are basically offering a “buy, install and forget” resource that makes life significantly easier for industry and environmental experts. There is a ton of value here. Not only are we taking an in-depth look at what’s going on in the environment through air quality control monitoring, but we are also taking that information and transforming it into action. The real gold here lies in the return on investment. A little money spent on these sensors upfront can ultimately save millions of dollars, lives and entire forest regions in the long run. Today, IoT technology allows us to prevent and control wildfires before they occur, and early fire detection leads to safer environments for us all. A unique human aid We are making life simpler and safer for all by using technology to do what humans can’t. Back in the day, people had to sit in an operation tower for hours, looking out to catch any major changes in the environment. Today, there is a major shortage of people willing to do this kind of work, and can you blame them? As humans, we can only be in one place at a time doing one thing at a time, but with technology, this is not the case. With simple sensors, we can now monitor and control a lot more environments at a much more affordable rate. All this to say, the goal here is not to replace humans with technology as some might think; what we are really doing is enhancing human ability through the power of technology. I’ve worked in technology for over 30 years, and every day I witness its evolution. I know it’s hard to imagine a world without cell phones, but I can still clearly recall the days when cell phones took up the entire trunk of a car, and now look at the world, most of us carry the same ubiquitous smartphone in our pockets. Technology is amazing, and we have the opportunity to use it to our advantage. At FreeWave, we are taking the capabilities of mobility – LTE, 4G, Satellite, Wi-Fi, Bluetooth, 900 MHz– and marrying them with sensors. The data we gain from these sensors is saving us time, money and resources. At the end of the day, we’re taking away the need to “overthink” industry issues, like how to better prevent forest fires, and instead are replacing our questions with data-informed predictions and timely proactive responses. Every day, we strive to provide industry leaders with the tools and technology needed to spearhead faster and safer environments for us all. This is certainly not a boring business, and I thoroughly enjoy working for a company that is using technology to have an impact on the things that matter most.
Got Data? Now what?
It’s hard to imagine a world without the daily convenience of modern technology. Just yesterday, I joked with my kids about the world before the internet – a time when we actually had to go to the library to look up unknown information. I can still remember the early days of my college career back in the late 90s, the internet had just come out, and we were all getting used to this new phenomenon called a “search engine.” Life has drastically changed over the last 25 years. Now, nearly all the information we want and need is at our fingertips. Today, we have more access to data than most people know how to handle. Data is all around us, collected through the day-to-day actions and reactions of our lives. When we take the time to intentionally analyze, interpret and distribute the data metrics available to us, we can make smarter and more efficient decisions. There is so much to explore, and while our increased access to data is pretty interesting, the reality is that the combination of data and modern technology can change the world. Like many things, though, there are two sides. Sure, industrial companies can capture huge amounts of data, but it also raises the question: now what? How do you put all that data to work? Breaking barriers and pushing boundaries At the intersection of data and technology, we can push boundaries in work, business and society like never before. Data insights allow us to be more precise and accurate in our day-to-day work, which allows us to be more effective and efficient. The operational benefits here are endless, including improved quality control, reduced energy consumption, enhanced safety and increased operational consistency. Just take a look at the food industry, for example. Many field workers in smart agriculture rely heavily on data insights to control, predict and create the best environments for quality crops and harvest. The more accurate their predictions, the better their harvest, and the better their harvest, the faster we receive our food through the supply chain. Today, internet of things (IoT) technology can connect remote and mobile assets, like a tractor, for instant data access, making it easier for farmers to be more efficient and effective in their work. It’s really amazing when you think about it. Data is transforming how we operate in this world, creating better environments for us all. The FreeWave impact At FreeWave, we are constantly pushing the boundaries of technology to create faster, smarter and more efficient work environments. I’ve been a part of the FreeWave team since 2019, and I am constantly amazed at the ways our technology provides innovative solutions for real-world issues. Our products enable our customers to improve their work processes, and through our single pane of glass approach, we offer a simplified experience for businesses and industry leaders to receive automated technology that transforms data metrics into real-time execution. One of my favorite use cases to discuss is FreeWave customer that uses drone technology to deliver food and other valuable resources to far-reaching areas across the globe. With FreeWave products, they can run a smarter and more efficient operation. Their robotics delivery system is combating many of the complex access challenges the world faces on a daily basis. Our IoT technology is helping them solve complex issues with simplified tech solutions, and simple solutions create more time, energy and space to focus on what matters most: people. If you need a product to help you bridge the gap between technology and data, FreeWave is your solution. We are enablement partners, helping every one of our customers accomplish their complex goals. It’s inspiring to work with brands and businesses striving to create a difference in real-world issues. Our technology plays an intricate role in sustaining work environments and supporting entire industries around the globe. Data makes the difference At the end of the day, data is more than mere statistics; data is the key to our efficiency, productivity and safety. Data makes the difference in energy consumption reduction. Data makes the difference in the overall quality and safety of our daily environments. Data makes the difference in everything. Every day we have the opportunity to use data to our advantage, and at FreeWave, we are helping industrial innovators do just that. As technology continues to evolve, we will continue to provide top of the line IoT solutions that transform data into actionable insights and execution so you can not only access a treasure trove of data, but also know exactly how to answer the age-old question: now what?
Data is everywhere, even on Mount Everest: Sensor-to-cloud and extreme environments
Technology – from Mount Everest to the farm It’s amazing what technology can do when paired with human will. Just a few years ago, a team of scientists made history as they trekked up Mount Everest with the goal of running environmental studies. With backpacks full of sensors (which included FreeWave technology), these men pushed boundaries to create a new normal. When we intentionally use modern technology to our advantage, we can create better, safer and more productive environments within every industry. Today, the same technology used on Mount Everest is now powering multiple earth science programs transmitting sensor data from remote environments to earth scientists, climatologists and meteorologists through cloud servers. This is just one example of many where sensor-to-cloud solutions have transformed our ability to interact with extreme environments in the modern world. A deeper look at extreme environments Typically, when someone thinks of an extreme environment, they imagine harsh, rugged terrain in a far-off remote location; however extreme environments aren’t limited by this definition. Take a large farm, for example, with a multitude of deployed assets and equipment across hundreds of acres. Traditionally, an operation like this requires an employee to physically check on the farm equipment multiple times a week, manually turning valves on and off, in addition to monitoring and controlling the overall farm environment. These day-to-day tasks are not only time-consuming but physically draining. In this case, the operational output required on the farm makes it an operationally extreme environment, and extreme environments are just one space where sensor-to-cloud solutions shine. Sensor-to-cloud in the real world Today, sensor-to-cloud systems utilize deployed sensors to collect and transmit data from remote locations. These sensors send the gathered information back to cloud servers for further research and analysis, enabling entire teams to utilize their limited time and resources more effectively. With sensor-to-cloud systems, we eliminate the often-laborious mechanics of middlemen procedures so that industry leaders can focus on what matters most. Let’s revisit that farming example. With sensor-to-cloud technology, farmers can automate the repetitive tasks of their operations. Something as simple as discrete soil sensors further allow farmers to virtually monitor their crop health, creating more time and space to focus on other high-value tasks. This gives them time, often an invaluable asset, to do what’s needed. In a sense, we can improve the productivity of an operation with an automated suite of sensor systems. Imagine the difference a network of sensors can make. The FreeWave difference For several years now, FreeWave products have been a leading resource solution for extreme environments. Our sensors were a part of the great Mount Everest expedition, and today, we have deployed sensors in many areas, including pipelines in Alaska, ice shelves in Antarctica, smart farms across the country and many other locations – rugged and traditional. We are providing the groundbreaking technology needed to monitor data in extreme environments so that our partners and customers can make the best, informed decisions for their operations. As the Chief Technology and Product Officer at FreeWave, I am constantly amazed at the impact our products have on the world. We are working with some of the major brands of our time, helping them solve massive problems affecting society at large. Our technology solutions serve entire industries, like oil and gas, agriculture, transportation and traffic, as well as many others that contribute to the well-being of the globe. It is great to be a part of a company where we can say our products are a part of the solution for life’s essentials. Every day, we help industry leaders identify their pain points and provide them with a single pane of glass product solution that helps them see the data wherever they are without the drain of additional resources. Our rich portfolio of radios, gateways, cloud software and analytics allows us to stitch together a range of packaged ready to use applications that solve our customer’s problems through simple, turn-key solutions. Sensor-to-cloud in the future Data is everywhere, and now more than ever, we have the tools and resources we need to digitize the world around us. As we build the future, sensor-to-cloud solutions will continue to play a critical role in gathering, processing and managing data in extreme environments around the globe. As I look at the world before us, I see endless opportunities to continue to leverage technology and data to build a better and more informed life.
The Importance of Data in the Life of Bees
Have you heard the buzz? Data is everywhere, informing, influencing and affecting the direction and decisions of our lives daily. Due to modern technology, we now have access to a world of knowledge that was otherwise unavailable just 50 years ago. This data is gold, and when we intentionally utilize technology to mine and refine it, we can create a more sustainable world. Industrial internet of things (IIoT) technology makes a sizable and sustainable difference in multiple industries – including apiculture, the business of beekeeping. Much to my surprise, I learned that taking an intentional approach to data collection and distribution profoundly impacts the lives of bees and surrounding societies. Data and beekeeping In 2019, I went on a mission with my company ModuSense to create an IIoT solution that could aid specific industries with several deployed assets in need of environmental monitoring. After exploring applications in forestry and horticulture, our journey led us to apiculture farming and the high value commodity of honey. I believe in fully immersing myself in business and technology, so I became a beekeeper to understand the complexity of the apiculture industry better. Beekeeping is a high-value asset in New Zealand and Australia, almost exclusively because of the manuka honey variant. While traditional clover or bush honey may earn between $4-6 dollars a kilo, manuka honey can earn as high as $200 a kilo, making every drop critically important. Proper hive monitoring is essential for quality production, but beehives (especially the manuka variant) often grow in difficult terrain within remote locations, making them challenging and expensive to access regularly. Without IIoT technology, beekeeping is a naturally complicated process. Oftentimes, beekeepers must utilize helicopters to deploy and check on their hives, which is time-consuming, expensive and challenging. However, with the right IIoT solutions, such as sensors that monitor hive conditions, the beekeeping process is simplified, increasing productivity and overall harvest quality. With access to the right data, beekeepers don’t have to check on the internal conditions of their hive manually; instead, they can manipulate and control the hive’s environment from afar through sensors to create optimal conditions for production.This IIoT technology is helping us augment the beekeeping process through effective data monitoring, which is ultimately creating a simpler and more sustainable approach to hive operations. Simple solutions In many ways, beekeeping is quite similar to dairy farming, meaning better environments create better products. When cows receive access to the best pastures, they inevitably produce better milk which then creates better dairy products for us to consume. The same is true in the life of bees. When bees intentionally receive access to the best environmental conditions and quality nectar, they are able to become high-strength, crop-ready colonies which naturally produce a high-quality harvest. Effective regulation of the bees’ environment is critical to ensure the best yield, and this is where IIoT technology is making a world of difference in the apiculture industry. Bees are incredibly sensitive to barometric pressure, humidity and temperature, all of which play a role in their ability to produce as a colony; bees also need to maintain a central weight to operate at peak performance. As such, the best way to ensure a quality harvest from a beehive is to maintain the colony’s weight and manage the hive’s temperature. With proper data insights, we can do this remotely by studying and monitoring the internal collective health and conditions of the hive. Without lifting the hive’s lid, which disrupts the harvest process, we can virtually control the bees’ environment without the extra cost or time of added deployments. These insights are easy to monitor from a single pane of glass, making critical information accessible faster than a bee can fly (which is pretty fast at 20 mph!). Integrating special IIoT sensors, we developed the HiveBeats Environmental Monitoring Sensor, HiveScale V5 and Brood Monitoring Sensors that now provide precise insights into the life of a bee, which ultimately determine if and when human intervention is needed. This allows for significantly fewer errors to occur and saves time and money along the way. Data connects life – for bees and people At ModuSense, we are proud to develop timely IIoT solutions, including sensor devices, cloud-based data routing, data storage, analysis platforms and connectivity hardware to provide solutions that are easily deployed and ready to fit for purpose. In partnership with FreeWave, we are committed to accelerating hardware and software IIoT development capabilities in meaningful and immediately measurable ways for remote industries around the globe. As the CEO of ModuSense, I am proud of the work we have done to create real-life change in the world of apiculture. Our special sensors enhance the hive cultivation process by extracting critical internal data insights, all while creating a culture of industrial sustainability for beekeepers along the way. We are creating a new way forward by leveraging the power of IIoT technology to monitor data and using that insight to respond with actionable execution. Sustainability is about finding ways to use less to do more and our ModuSense sensors are doing just that for beekeepers around the globe. Today, technological intervention plays a significant role in the efficiency and sustainability of our work. When we remove the guesswork from our labor, we can respond with intention and precision, creating better work environments and industry performance worldwide. I am proud to contribute to this type of change in the life of bees and beyond.
Technology Simplified: Leveraging Data in the New Digital Era
Excited by tomorrow, we face a new world filled with endless possibilities each day. Thanks to modern technology, simple sensors open the doors to our favorite restaurant, edge computing allows manufacturers to spot and correct production glitches before they happen, and high-tech traffic cameras analyze and record thousands of license plates daily to spot stolen and unregistered vehicles while also identifying suspected criminals. It’s no secret that the world is evolving before our eyes, and through the technological advancements of this digital era, we are creating a more efficient world. The power of data Data is a powerful tool of knowledge, and lucky for us, it’s everywhere! Every one of our actions is driven by a manual process of data – like the simple act of putting on a jacket when it gets cold, or an automated process of data – like a valve instinctively shutting off when a water tank gets full. Today we have the technology to effectively process, analyze and distribute data metrics in tremendously impactful ways. What does greater simplification look like for industrial leaders? Remote operations simplified When leveraged effectively, industrial internet of things (IIoT) solutions take remote operations to the next level, simplifying the work process for teams and industries across the globe. Think about some of the most popular high-value remote assets today, like drones, video surveillance, or even center pivot irrigation systems – these entities perform so well because they do what humans can’t. In mere seconds, IIoT technology can process, distribute and respond to data that would otherwise take an entire team hours, days or even weeks to achieve. In the not so distant past, industrial operations relied solely on data consumption (i.e., how much water is in the tank; what temperature is the water), but today, advancements give us the ability to respond nearly instantaneously to that collected data with actionable execution. Today we can view and control the management of an entire operation remotely on our cell phone. We can see how much water is in a tank or what temperature that water is at and automatically change and adjust the water levels and temperatures from near or far. As a result, the amount of time, resources and energy needed to run businesses has transformed entirely, and this evolution allows us to create an enhanced world and standard of work. Simple deployment Remote operations are oftentimes in rugged terrain, making them difficult or even impossible to access. At FreeWave, we solve this complex issue by providing pre-configured ready-to-deploy solutions, complete with everything needed to achieve the mission at hand. For example, through FreeWaves’s joint venture with ModuSense, we’re simplifying connectivity to cloud with a variety of pre-configured and ready to deploy monitoring and sensing solutions by supplying the entire solution with a 12-month data plan, dashboard, 12W rapid recharge solar panel, satellite connectivity and Bluetooth connectivity. You can use your mobile phone to validate the data directly from the gateway without having to wait for satellite transmission. We all know the “gotchas” when it comes to buying technology. Simple deployment means you’re ready from day one, without needing to buy additional components. Real-world impact As Chief Operating Officer and SVP of Global Sales and Marketing at FreeWave, I get a front-row seat to the real-life impact modern-day technology is having on lives, businesses and entire industries. The essentials of life have become simplified, and in the process, more people and businesses receive greater access to the things that matter most like critical information, metrics and potential outcomes. Creating a more sustainable world and preserving natural resources like food, air, energy and water have been at the forefront of IIoT since FreeWave began almost three decades ago when we brought long range, low power consumption, C1D2, 900 MHz connectivity and radio technology products to our customers. Since then, our connectivity options have greatly expanded by adding EDGE Compute, Software, Industry Protocol Conversions, Data Broker & Cloud, a complete end to end solution and with it comes the responsibility for greater environmental stewardship. We’ve all seen the devastating impact an environmental catastrophe, like the 2010 Deepwater Horizon oil spill, can have on the globe. Simple mistakes can and do cause enormous repercussions that affect us all. The truth is, with human interaction there will always be the cost of time and possible room for error. Technology, however, is different, as it allows us to not rely solely on human capacity and depend more on interconnected and advanced systems. Now, we don’t have to wait for someone to run into a situation or crisis and manually pull a lever or travel to turn off a valve. Instead, preprogrammed automation or a simple click of a button or flip of a switch from virtually anywhere in the world can control your high value remote assets. FreeWave is a technological pioneer in the 21st century. We have connected the unconnected with a reliable ecosystem of edge intelligent radios and solutions to optimize the extreme edge of remote industrial operations. Through our single IIoT platform, we provide expanded capabilities for data capture, analysis, control and automation. Our single pane of glass approach provides a simple, single vendor, one-stop-shop solution for remote operations worldwide. At the end of the day, when we take the power of data monitoring and funnel it through modern technology, we open ourselves up to a new world of endless possibilities and opportunities. It’s one thing to have data; it’s an entirely different thing to know how to leverage that data. At FreeWave, we are constantly pushing the boundaries of data monitoring and modern technology through our IIoT solutions and creating a better, safer and faster world of work for industries around the globe.
Manufacturing in the Age of IIoT
Few industries can claim such a foundational impact on the United States as the manufacturing industry. Modern manufacturing began with the birth of the assembly line and the transformational effect it had on the automobile industry. Companies then adopted that approach to product manufacturing and logistics. The early phases of the next generation of manufacturing appeared as machine-to-machine (M2M) communication, a forbearer of the concept behind the Internet of Things (IoT). Eventually, IoT became so broad that specific designations were needed to differentiate between the consumer and industrial side of things, thus paving the way for the Industrial IoT (IIoT). Today, manufacturing companies, while often on the leading edge of automation technology, are still scrambling to adapt to the explosion of sensors, communication platforms, big data and high-speed analytics to maximize efficiency and future-proof their products or designs. Some companies are touting the idea of retrofitting – a concept that has existed for some time – but some plant engineers may be wary of the need for continual updating to a system that is bound to become irrelevant at some point. Still, the process can be relatively painless, and is quickly becoming necessary, as Plant Magazine notes: … Most food manufacturing and processing plants have motors powering essential equipment such as mixers, conveyors and packaging machines. But they’re just motors. They don’t play in the same league as other intelligent devices. With years of service to go, it’s difficult for plant managers to justify replacing motors that work just to make an upgrade with smart features. But motors can connect to the IIoT without a complete overhaul. Instead of investing in new, more intelligent/smart equipment, consider investing in sensors that provide similar functionality to connected devices. Smart sensors attach to almost any standard low-voltage induction motor. Sensor technology is sophisticated enough to be small, functional and energy efficient. For certain kinds of manufacturing plants, a complete overhaul may not be necessary, and a ‘simple’ retrofitting process might easily solve the first part of the problem. The second part of the problem, or challenge, is that along with smart hardware, plants also need the software and data processing capabilities to keep pace. Some plant engineers are solving these challenges by deploying programmable radios capable of hosting third-party applications so that the data can be transmitted in smaller, highly specific packets, making the transport both fast and easier to push into predictive analytics platforms. From there, software companies are building in the ability to process data in the cloud, essentially running all critical data and software operations through either a fog or cloud computing process. Cloud software services have the potential to be highly customizable based on the needs of the manufacturing plant. These technologies are good examples of the ongoing convergence between traditional information technology (IT) and operations technology (OT) needs in industrial markets. Currently, the manufacturing industry is sitting in an interesting spot: leaders in the M2M world, but still adapting to the IoT world. Where the industry ends up in the next 10 years could be a strong indicator of the economic and financial temperature of the domestic and international marketplaces.
Connected Traffic Management Systems
Connected traffic systems are the next push in our growing digital world. There is a massive opportunity to leverage modern technology for a variety of traffic applications. The rise of the Internet of Things (IoT) has led to advancements within many municipalities to optimize public transit, traffic management and public safety. As a result, cities around the country are looking to technology and connected devices to reduce congestion and improve traffic flow. Connected Traffic Systems Technology U.S. Commuters spend 14.5 million hours stuck in traffic every day. The Urban Mobility Scorecard from 2015 reported that commuters generally needed to allow 48 minutes for a trip that would take 20 without traffic. The report predicted that conditions would continue to worsen if dedicated programs, policies and projects are not expanded. From a public transportation perspective, many cities are dealing with outdated infrastructure that can lead to severe delays and transportation outages. Voters in San Francisco, for example, recently approved a measure for a $3.5 billion regional bond to update its aging BART transportation system. In addition to investing in and fixing ageing infrastructure, U.S. cities also aim to become smarter and prepare for the future by leveraging technology. The U.S. Department of transportation has recently offered nearly $65 million in grants to cities around the country that are working on advanced transportation initiatives. The grants support a number of projects including traffic signal technology to reduce congestion at street lights, transit trip planning technology and applications, ride-sharing services, and more. While the cities work on the ground, there are also efforts to improve air traffic congestion. AT&T recently announced that it is partnering with the National Aeronautics and Space Administration (NASA) to develop a traffic management system for drones. Sensor-2-Server for Traffic Management Sensor-2-Server (S2S) solutions offer reliable connectivity options for municipalities looking to fix traffic flow issues and create smoother traffic management. By leveraging S2S operations, the city or municipality can enable intelligent communications at the edge of the communication network, from the sensor at the traffic light back to a specific server, enabling advanced data analytics. Cities with outdated communication infrastructures, such as a T1 phone line for traffic control systems, can easily update their network with wireless S2S solutions. S2S technologies are created to perform in extreme weather, offering a real-time monitoring solution around the clock. The cost of operations is significantly reduced with S2S solutions and they deliver the connectivity needed for modern IoT networks. Some S2S solutions are equipped with the ability to introduce custom, third-party applications at the edge, which can help reduce costs and enable new automation capabilities. As cities throughout the U.S. embrace IoT and work to become Smart Cities, traffic management is a major initiative. While cities work to improve aging infrastructure, they can help improve traffic congestion by incorporating a traffic management system that can leverage data from an S2S network to optimize traffic flow.
Staying Connected at the Ski Resort
Getting connected at the ski resort, sounds like a dream come true. We can all probably admit that we often have an expectation for Wi-Fi availability at most places we go – our hotels, coffee shops, restaurants, shopping centers and more. Now, Wi-Fi is popping up in the places we would have ruled out for connectivity several years ago. Places like golf courses, campgrounds, marinas and ski resorts. This is catching on quickly. It is becoming a necessity to offer Wi-Fi at ski resorts and this is largely due to the fact that modern technology can allow it. The rise The Internet of Things (IoT) has opened the door to not only connectivity everywhere, but data that allows us to make better decisions. There are apps available today that allow skiers to compare lift line times and identify their location on a trail map. While the concept of complete connectivity is quickly catching on, there are still challenges to overcome. For example, Wi-Fi signals can be limited in strength; especially in snow-packed, rugged outdoor environments at ski resorts where temperatures are consistently well below the freezing-point. Connectivity at the Ski Resort Because the majority of their operations are outdoors, ski resorts require a rugged Wi-Fi option. This is true for all outdoor Wi-Fi applications – whether it’s a campground, marina, golf course or any other outdoor-based business. Each will face challenges due to varying landscapes and weather extremes. These businesses looking to bring connectivity to customers need to find a shorthaul solution that is rugged and secure enough to remain connected in the most extreme elements. They also need to enable high-speed, high throughput application solutions. In addition bringing connectivity to ski resorts – we’ve seen increased adoption of industrial Wi-Fi networks for security programs and disaster response. For the skiing industry, this may be beneficial to avalanche and rescue teams. With the added ability to track skiers on the mountain, as well as send targeted warning or emergency alert messages across the network, resorts would have an additional tool in the arsenal to facilitate safety measures across wide areas. Having reliable Wi-Fi during emergency communications, especially high-speed Voice, Video, Data and Sensor (VVDS) data transport, can help ensure secure lines of communication during emergency or disasters. Additionally, resorts can leverage the secure network from VVDS enabled Wi-Fi to increase resort security. The Rugged Solution Solutions are available today that will help ski resorts stay connected. These types of technologies are used every day in highly industrial environments like oil and gas, water/wastewater and even by the military. They function in the most remote, volatile, exposed environments. Now, they can be used in innovative ways to bring connectivity to ski resorts. Whether a ski resort wants to offer Wi-Fi to guests so they can better access their skiing apps and GPS, or if it’s to create a secure communication link for emergencies and rescue efforts – these solutions are designed to ensure connectivity. They offer robust, secure transport of VVDS information over rugged, shorthaul communication networks for edge devices and outdoor assets. They are specifically designed for outdoor Wi-Fi connectivity that has been tested and proven in extreme weather and environmental conditions.
Big Data: Election Analytics and More
During the 2016 election season, we’ve seen considerable media coverage on big data and predictive analytics. The access to massive quantities of data has played an increasingly important role not only for predicting the election winner, but also for driving candidates’ campaigns. During the 2012 election we saw political data science and big data leveraged by campaign managers to tap into the public opinions of the candidates. The information garnered from those data points led to decisions that shaped campaign strategies. Since 2012, we’ve seen substantial advancements in political data analytics. A recent Forbes article explains this well, “In recent years, political data analytics has advanced from simple micro targeting to true predictive data science, and the track record is good. Some of the brightest minds in the field are using massive amounts of data, complex models and advanced algorithms to determine the best way to appeal to big swathes of the electorate without alienating possible converts.” A GOP strategist recently claimed that analysts have about 400 data points stored for the average American voter and noted that they are constantly querying the database for insight. Predictive Analytics is an increasingly useful and complex practice — and it is not limited to presidential elections. It can be used in almost every industry to drive intelligent and informed business decisions. First, let’s define predictive analytics in relation to this post. This definition from TechTarget highlights the role of statistical analysis and machine learning to arrive at an actionable model: “Predictive analytics is a form of advanced analytics that uses both new and historical data to forecast future activity, behavior and trends. It involves applying statistical analysis techniques, analytical queries and automated machine learning algorithms to data sets to create predictive models that place a numerical value, or score, on the likelihood of particular events happening.” Beyond the Election With the rise of the Internet of Things (IoT) we are currently seeing predictive analytics leveraged for applications across industries to help organizations make better operating decisions. Here are a few application examples recently highlighted in Forbes: Models designed to predict where crimes will be committed Predicting the price of oil Insight into how upcoming events might influence a business Predicting the probability of success for a startup Identifying trends in the academic literature Predictive Analytics and S2S Communications Today, there are technology solutions designed for intelligence-enabled decision making. Sensor-2-Server (S2S) communication solutions in particular, help meet the increasing demand for data. S2S by definition is an intelligent communication that begins at the sensor level and targets servers for specific reasons. With an intelligent communication system to enable predictive analytics, operators can leverage new technology to improve the profitability of their businesses. As an example, let’s look at the one of the predictive analytics use cases listed above– a model for predicting the price of oil. If an oil and gas company has an intelligent system in place, it can respond in real-time to its oil production levels. The data can help operators determine if production should be increased or decreased in certain areas to maximize profitability. Predictive Analytics Recap Predictive analytics engines allow organizations to analyze more data, faster. Key decision makers gain insight into trends and patterns that may be otherwise overlooked. They can make intelligent predictions that shape business operations and strategy. With the right techniques in place, an organization will make better decisions, cut costs and increase profitability. And for those who are running for public office? They now have more insight into the opinions and trends for voters than ever before. This has changed the game in a lot of ways because campaigns can be tailored to an audience based on specific data.
IoT Emerge Recap
IoT Emerge bounced on the scenes of Chicago this week. Yes, aside from the long awaited World Series win, an IoT conference was happening in this windy, action-packed town. The conference boasted two days of keynotes, technical sessions, workshops, live demonstrations, hands-on training and plenty of opportunities for networking with industry peers. The IoT Emerge mission is to continue to educate and promote cross-industry functions with a focus in Industrial IoT, smart cities and IoT engineering. Below, we’ve highlighted the best moments from the week. IoT Emerge: What have we learned? Back in 2011, research firm Gartner said the Worlds of IT and Operational Technology Are Converging. We believe IT/OT convergence is a critical concept: it promotes a single view of an enterprise’s information and employs process management tools to help ensure that every person, machine, sensor, switch, device, etc. in an organization has accurate information in the best format and at the right time. We learned optimizing the business process is vitally important. Decisions will be made in real time with higher levels of confidence because more information will be available regarding the event or condition. For example, load shed or curtailment events will be based on energy availability (IT sources) and demand throughout the distribution network (OT sources). Event management in an IT/OT converged networkwill execute as a closed loop process by targeting a feeder or substation, issuing curtailment signals to customers under that substation or feeder. This gauges real-time response and repeats as required to achieve the target reduction time. What other insights did we gain from IoT Emerge? Myths about IoT Engineering: The Industrial Internet of Things (IIoT) is not ready to support predictive analytics With commentary from Eddie Garcia @freewavetech | Published on @ElectronicDesgn “When most people think about the IIoT, they think of machine-to-machine communications (mostly supported by RF technology) that have dominated the industrial sector for years. However, the convergence of IT and OT practices have seen intelligence moved closer to the access layer than ever before. New communication platforms have improved to the point where big data transport can come directly from the sensors at the edge (OT) all the way to the servers in the back office (IT). The industrial sector is closer than it’s ever been to supporting the future of data collection, transport, and aggregation, ultimately resulting in the huge data sets necessary to support predictive analytics at the IT/OT level.” IoT Emerge and Up-Close and Personal IoT Experience By @JKerns10 | Published on @MachineDesign “As IoT applications and case studies start piling up, some companies still wonder where the Industrial Internet of Things (IIoT) fits in their production lines. There’s lots of information on the internet about the IIoT, such as how IIoT worked in one application or how much a company could save by using a specific IIoT product. While examples and case studies offer ideas on how IIoT might fit your production line, having a chance to talk to experts directly about your applications and concerns can help ease concerns.” IoT Emerge: Looking ahead to the future By @IoTEmerge | Published on @cote_se IoT Emerge a chance to shed light on the possible digital future. Smart cities and Industrial IoT top the watch list. Along with the conference buzz, conference organizer Penton Publishing also launched the IoT Institute aimed at educating the growing IoT world. Color your IoT World By @IoTEmerge Coloring is not just for the kiddos. IoT Emerge worked with local Chicago artist Rawfa to create a wall sized coloring book. Conference goers got to take a break from the IoT information overload and color to their harts content. Industry thought leaders did an excellent job representing the broad range of emerging IoT applications this year, and as we move steadily toward the close of 2016, it’s clear that we can expect some exciting and innovative technology applications in the not-too-distant future.