Sensor-2-Server: Intelligent Communication at the Access Layer

*This is the first in a series of blogs examining Sensor-2-Server communications, development and implementation. Throughout history, industrial revolutions have hinged on the power of automating processes. While automation today offers many benefits, imagine if you could automate thousands – or even millions – of processes simultaneously? This is the next potential wave of innovation, and it’s the organizations that are “geographically dispersed” or “automation heavy” that will benefit the most. While long-range communications and connectivity have become increasingly easier to attain, businesses need to be able to break down their isolated islands of automation in industry to achieve comprehensive and connected automation at scale. For example, there always has been a clear line dividing operations technology (OT) and information technology (IT) networks. The emergence of the Internet of Things (IoT) blurs that line as industrial operations head in the direction of complete connectivity for all devices on a network – including those remotely located in the field. With new dedicated access layer platforms, IoT data can be analyzed, acted upon and transmitted from anywhere in an Industrial IoT (IIoT) network. The increasing shift toward Industrial Internet of Things (IIoT) tends to bring up a lot of questions about the continued value of Supervisory Control and Data Acquisition (SCADA) systems that have traditionally served as the driver for monitoring and control in industrial markets. Although OT and IT are beginning to converge, there is still high demand for SCADA data. However, new technology offers the opportunity for data to be used in ways that were previously not possible, such as predictive analytics. This doesn’t make SCADA obsolete, as many operators are using it and will continue to employ it. Going forward, industries will leverage new technologies designed to help them make better business decisions than with SCADA alone. Sensor-2-Server™  (S2S™) intelligent communications for the access layer can collect and transport the data that supports higher-level analytics. As IoT becomes adopted by industrial markets, there is going to be an increased demand for video, voice, data and sensor data communication from the outermost layer of the network (think sensors on oil pads or water tanks). Industries like oil and gas, electric power, agriculture and utilities are starting to pick up on the benefits of S2S when it comes to profitability and cost savings through more advanced data analytics. Defining Sensor-2-Server S2S is intelligent communication that begins at the sensor level and targets servers for specific reasons. These servers could include anything from a SCADA data server that collects and monitors through the SCADA system or a Big Data engine. S2S could be leveraged in a predictive analytics engine that compares data at rest stored in a database to data in motion in real time from the access layer of the network. The concept of S2S extends beyond transmitting data. It is about creating intelligent transmission from a specific location back to the appropriate server with the appropriate intelligence to drive action for change. What is the Access Layer? The access layer is the edge of the IT network. An IT infrastructure has a core that is home to all the Big Data and data analytics. At this core, the data is “at rest” because it has reached its final destination. Next is the distribution layer of the IT infrastructure which is where the major plants, sites and facilities are located. Further out is the aggregate layer where data at the next level in the network is collected. Extending out even further is the access layer.   The access layer is the layer at the far edge of the IT network. In oil and gas, for example, oil pads would be part of the access layer because they are typically remotely located at the edge of the network. It is highly likely that sensors physically exist in this layer for monitoring and control of these devices. Additional examples of the access layer are tanks, refinery sites and ocean exploration vessels. In water/wastewater, the access layer could be the treatment facility that has the water meters, pumps, smart meters, etc. Essentially, in an industrial site, the S2S access layer is the furthest point at which the operators are collecting sensor data. Industrial organizations today need intelligent secure communication and transmission from the sensor data back to the appropriate server, and there are a number of available options. What’s Next? Next week, we’ll continue our Sensor-2-Server series with a look at implementation and some of the core tenets of communication system development.

IIoT Top News: Wireless and Wi-Fi

Gone are the days of limited connectivity—at least that’s the plan this year. According to Wireless Design Magazine, The Broadband Alliance has announced plans to hosts a world Wi-Fi-day. This global initiative has teamed up with more than 135 technology companies to help encourage all utilize the IoT and IIoT to its fullest, by taking steps to help business, industry and neighborhoods have access to quality wireless. Now as you reach for your smart device, smart machine or connected thing, hold on tight wireless is taking you to the deep end. Don’t worry you can handle it. Enjoy this week’s reading, and as always tell us what we missed! Army Command Post Gets Secure Gigabit Wi-Fi (GCN) The army is hoping to save countless hours tearing down wired battle systems networks with a new secure gigabit Wi-Fi. Mark Pomerleau with GCN reports that “Wireless capability speeds that configuration, improves troop mobility and provides greater flexibility for commanders.” Subsea Fiber Optic Networks: Past, Present and Future (RCR Wireless News) In this interconnected world, it is amazing to think about the amount of subsea fiber optic networks connecting the planet today, tomorrow and yesterday.  Joey Jackson with RCR Wireless News reminds us all that “Subsea fiber optic networks are responsible for the transmission of 90% of the world’s international data.” Type With Your Brain: Future Tech Ditches Keyboard (Discovery News) The future of wireless could allow you to get rid of the keyboard all together and simply type with your brain. Eric Niiler, with Discovery News, tells us that “Scientists are already working on technology that connects the brain to electronic gadgets and two new devices unveiled this week could help usher in a future without keyboards: a wireless brainwave headset and a brain sensor that dissolves in the body after completing its job.” The Future of Wireless Technology is Coming at Light Speed (The Telegraph) One hundred times faster than Wi-Fi, the future of wireless is expected to reach light speed. Rob Waugh with the Telegraph believes that “The speed boost will come from an unlikely source: the lighting above your head. Instead of Wi-Fi radio aerials beaming data through buildings to your laptop, computer-controlled LED bulbs will flicker above your head, beaming out signals like a super-fast Morse code.” The Future of Public Wi-Fi: What To Do Before Using Free, Fast Hot Spots (Wall Street Journal) Setting up an office on the sidewalk isn’t a realistic option year-round, but change is coming. It is good to know what to do before you jump on that free public Wi-Fi.Joanna Stern with the Wall Street Journal informs us, “Wi-Fi networks with widespread coverage and new standards are popping up to allow us to cut back on paying the carriers an arm and a leg for cellular data.”

IIoT Top News: IIoT Predictions and Innovations for 2015-2016

As we inch our way closer to the New Year, we would like to take a moment and appreciate some of the technological advancements of 2015, as well as a few bold IIoT predictions for our connected-world enthusiasts. This medley of top news gives credit to our inventiveness, while highlighting a future forecast for IIoT. No matter your place in the world, drones have captured our attention. Precision Ag has changed the way farmers care for crops and animals. So naturally, more and more farmers would be jumping on the drone plan of action. Recently, the FAA has been putting a major kink in the farmer’s right to use drones in farming. The ruling states that if a farmer uses a drone for farm operations in any way, they must file with the FAA for a commercial exemption to use that technology legally. New permanent rules for drone usage could be in place next year from the FAA. So time will tell how the FAA’s ruling will impact the farmers and other commercial drone users in this country. Now it seems every car manufacturing company has grabbed ahold of the terms automation and autonomous. The next generation of cars needs to be self-driven, so the race is on to see what car company will own the rights first. A group in China raises that bar even higher by creating a self-driven car, they claim is operated solely by your mind. Just think one day in the near future you could climb into your car, click your heels together and merely think, “There’s no place like home,” and off the car would zoom. 2015, has been a good year for smart city development here in the U.S., with more than $160 million dollars in governmental funding allocated for this initiative. Gartner predicts that by 2016, the smart cities planned by the government will end up using 1.6 billion connected things. Twenty-four percent of IoT in 2016 will be in commercial security cameras, webcams and indoor LEDs, according to Gartner’s latest prediction. So, with everything becoming connected, IT departments are trying to stress the importance of securing this growing data collection. Don’t get us wrong IT departments are looking forward to the IoT expansion in 2016, but this level of increase in data could have a drastic impact on the networks, which is why IT managers surveyed suggest a new plan of action to combat the overwhelming IoT to the world we all know and love. This week concludes with three main messaging themes gained from this year’s Internet of Things World Forum (IoTWF). First, we must awaken and realize all the competitive advantage IoT can bring to businesses. Next, we must activate a realistic IoT deployment plan that will fit within our business needs. Last, we must accelerate the connection, with the assistance of service providers and developers. The IoT may change the way we function in this world, but the possibility of more innovation at our finger tips fuels our inventive minds forward. Hope you enjoy this week’s focus on IIoT predictions. As always tell us what we missed! Drone Use in Ag Increasing, But Lack of FAA Rules Slowing Technology (Capital Press) For every, good technological advancement there is a level of disruption expected as it thrusts itself into the market place. Drones are quickly becoming the must-have tool for the farming industry yet Capital Press points out that, “the Federal Aviation Administration’s lack of permanent rules for the technology is slowing its development.” Chinese University Develops a Headset That Lets You Drive a Car With Your Mind (Popular Mechanics) Autonomous cars appear to be the wave of the future. A group in China pushed the envelope even further by producing a car powered solely by your mind. They say the inspiration for this forward thinking technology can“bring more benefits to us, since we can better realize functions relating to brain controlling with the help of the driverless cars’ platform.” Smart Cities to Boost Internet of Things Market in 2016: (Gartner Chronicle Daily) The 2015, push for more smart cities is having an equally important impact on the number of connected things. According the Gartner, “The smart cities planned by the government will use almost 1.6 billion of connected things or Internet of Things (IoT) by 2016, an increase of 39 per cent from 2015.” Data Volumes and Network Stress Top IoT Concerns in 2016 (ITPro Portal) A group of IT managers were recently surveyed about the impact all things connected could have in 2016. The department managers stated that, “all this activity adds up to a huge number of devices with the overall average per individual UK organization expected to run into the thousands over the next 12 months. All these devices will be attached to a variety of networks resulting in increased stress on both existing and new networks.” The Internet of Things World Forum 2015 Highlights Three Themes (AME Info) This year’s Internet of Things World Forum highlighted three main themes throughout. The IoTWF focused on, “awaken, activate and accelerate the IoT solutions for your business.”  

Guest Post: IHS Predicts IIoT Cybersecurity Will Increasingly Be Implemented in Hardware

By Sam Lucero, Sr. Principal Analyst, M2M & IoT at IHS Technology IIoT & Cybersecurity As IIoT systems create ever more critical dependencies in plant, energy infrastructure, and transportation environments, developers and deploying organizations will turn to hardware-enabled cybersecurity to stave off proliferating cyberattacks. Although the use of secure processors in smartcard applications, such as bank cards, mobile phone SIM cards, and digital ID documents is common, IIoT developers have barely begun to adopt a hardware-enabled approach. Instead, “root of trust” technologies, such as secure key storage, cryptography, and secure boot, are handled in software on the main application processor of the device. IHS estimates that in 2015 only 9.8% of all secure processors shipped were intended for IoT applications (that is, all of IoT, not just IIoT). The challenge with this software-based approach is that security functions on the application processor share common memory resources with other functions and are therefore exposed and vulnerable to malicious attack. Hardware isolation reduces (but cannot completely eliminate) this exposure and therefore dramatically increases the security of the device. This increased security is fundamentally why bankcards, mobile phones, and now ePassports, have shifted to the use of hardware-based security. Looking Ahead A lingering question regarding the use of secure processors in IIoT applications is whether implementation will be in the form of a second coprocessor chip placed alongside the host application processor, or whether cybersecurity hardware intellectual property will be integrated directly into an application processor. (Integration of cybersecurity circuitry still achieves hardware isolation in contrast to software, although some physical security measures may become impractical.) Chip companies such as Atmel, NXP, and Renesas Electronics have adopted this integrated approach for at least some of their respective portfolios targeting the IoT. It remains to be see whether an integrated approach will be successful. While integration helps to reduce overall device bill-of-materials, it can increase cost and complexity for cybersecurity certification, relative to a “two-chip” solution. About Sam Lucero Sam Lucero is a seasoned industry analyst with over 14 years of experience analyzing telecommunications and networking technology markets. He has spent the last ten years assessing the markets for machine-to-machine (M2M) and Internet of Things (IoT) applications. Sam has established leading M2M market research programs and managed international teams of industry analysts. He has authored numerous reports, forecast databases, and topical articles covering various aspects of the M2M/IoT market opportunity and has been widely quoted in news and trade journals, from the New York Times and the Economist to CNET and Wireless Week. Furthermore, Sam has moderated, presented, and judged at a number of industry events, including CTIA and Connected World. In 2014 Sam was named one of six “Augural Analysts” for M2M by Connected World Magazine.

IIoT Bold Prediction Series Part 2: Government Regulations Coming

Yesterday, we kicked the 2016 IIoT Bold Prediction Series off with a bang! As a nice follow-up, and second iteration of the series, Tim Mester, Principal Engineer of Advanced Technology at FreeWave, presents his Industrial IoT bold prediction: Prediction #2: Government Regulations Coming for IoT and IIoT Devices Due to a major security breach or reliability failure in connected devices or systems used in the Industrial IoT space, governments will be compelled to create and enforce new regulations on all IoT (and IIoT) devices, much like what is happening with the drone industry. (Note: IoT security breaches are not unheard of, as pointed out in this recent article by Bill Montgomery and  Glenn Longley’s latest prediction as the first part of the bold prediction series.) But, like drones, the barrier to entry into the IoT space has been lowered by improvements in technology. For IoT/IIoT devices, it is by the proliferation of a low power “system on chip” technology (SoC) and platforms like the Beagle Bone, Raspberry Pi and Arduino. Also, the Open Source software that is available allows developers to quickly pull products together based on these inexpensive SoC’s. Now that we can quickly have these products, how do those procuring these know that they are secure? How do they know they will be reliable and will not fail in mission critical applications? Companies that are already experienced in the M2M and IIoT space understand these issues and concerns. They take the necessary steps to ensure that they can deliver secure and robust devices to their customers. But what about the new comers? The ones that took the easy route? The ones who do not have the experience in this space? Looking Ahead As IoT/IIoT data and control becomes more sensitive and critical, concern will grow concerning the robustness of all of these devices that our lives are becoming dependent on. I believe that we will see a surge of government regulations that mandate the levels of security and reliability for IoT and IIoT devices. We are already seeing the beginning of these types of government regulations being mandated in some critical infrastructure industries and this will only perpetuate. In smart grid projects, for example, operators must take into consideration the cybersecurity reliability standards which FERC oversees. This helps operators choose a more cyber-hardened technology. On the other hand, for industries that do not have these standards in place yet, there remains a tradeoff between “secure” and “easy-to-use.” When strong cybersecurity has not been mandated, people tend to avoid the “harder-to-use” option that is typically more secure.

Announcing the 2016 IIoT Bold Prediction Series!

The year 2015 is soon coming to an end as the year 2016 looks to be ushering in exciting new ways in which the Internet of Things (IoT) is changing our way of life. It’s easy to see these transformations taking shape on the consumer side (home automation, smart appliances, connected cars, personal computers, smart devices, etc.), but what will 2016 hold for the Industrial IoT (IIoT) space? (Note: Go here for a quick rundown on the difference between consumer IoT and industrial IoT) 2016 IIoT Bold Prediction Series As stated in our introductory blog post (Are We All on the Same Industrial IoT WaveLength?), we at FreeWave Technologies are thrilled for the future of the IIoT and what it means for the entire business ecosystem. That is why we are excited to present the “connected world” community with a bold prediction in IIoT each day this week – aptly named the 2016 IIoT Bold Prediction Series! We of course encourage everyone to contribute your perspectives and experiences – whether in response to our predictions or a submission of your own – to help advance the dialogue around the emergence of the industrial internet. Our first bold prediction in the series comes from Glenn Longley, Regional Manager of Energy Markets at FreeWave: Prediction #1: Major Security Breach of Industrial SCADA System Brings New Focus to IoT According to Longley, “There will be a major security breach of an industrial SCADA system in 2016, which will drive industrial organizations to shift more of a focus on IoT and newer, more secure communication systems.” If you may not already know, cyber attacks against supervisory control and data acquisition (SCADA) systems are not new. In fact, Homeland Security Magazinereported earlier this year that “Cyber attacks against industrial targets—including power plants, factories and refineries—increased 100 percent in the past year, according to a new study conducted by computer technology company Dell.” Additionally, IT World Canada reported on a new InfoSec survey by the SANS Institute in 2015 where, “Both the degree of uncertainty and the rising number of known incidents are red flags calling for the dedication of greater resources to monitoring, detecting and analyzing anomalous activity in control system networks.” The survey also found that only 65 percent said vendor qualification of security technologies and solutions to be either highly important or mandatory. So with a proliferation of new cyber attacks seemingly happening more frequently, Longley explains how this widespread issue will impact IoT adoption in industrial businesses in the coming years: “Each company is different in how it handles the influx of IoT and the resulting IT/ OT convergence. With the merging/blending of Information Technology (IT) and Operations Technology (OT), the firewall that separates the two becomes more complicated and less well-defined. Traditionally, each was a separate entity; however, with IP-enabled devices and blending of technologies in enterprise networks, that dividing line becomes less clear. IT and OT professionals themselves might put a different emphasis on security, but in 2016, the two will need to come together (more than ever before) to prioritize security in their quest to create end points for all of their field assets. Therefore, security will ultimately be the limiting factor on how much IIoT is deployed.”

IT Security Dynamics and the Industrial IoT

The quest to understand production and operational factors, distribute this information to business systems and people within an organization, and directly improve business processes and profitability as a result is not new. In fact, it has been embraced by companies for decades. This collection of operational information for use in information or business systems is known as IT/OT convergence. Getting IT and OT systems to work together to maximize business efficiency — while avoiding negative consequences, risks and pitfalls in the process — is a tall task. However, thanks to new technologies, this process is becoming more practical and is creating the opportunities for huge economic benefits when these two disciplines are successfully integrated. But, how does this convergence affect the security paradigm in large, geographically dispersed enterprises? Let’s Talk Security Traditionally, companies have a corporate firewall that divides the corporate IT space from OT space. With an Internet of Things (IoT) communications network, there is a need to protect the sensors and new applications on the OT side. However, even if there is a secure communication link, if the individual devices that are connected on the OT side become compromised and the threat has access to that communication link, a hacker can push malicious data, cause denial of service (DoS), or introduce malware or viruses to the entire network. There are many of ways to run into problems on the IoT front if companies are not careful in their network design security implementation. On the IT side, corporate network security typically sees many threats. Those threats require significant attention, and consequently IT organizations have numerous options and tools to use, such as intrusion detection, log monitoring, network behavior monitoring, network inspections, whitelisting, firewalls, and more. The IT space has a much different attack surface than OT because with an IT network, the company can physically secure the building and control where the data goes in and out. Data escaping the building is relatively small in comparison to the OT space. WiFi that is leaking outside the building could be a vulnerability, but there are tools and ways to lock down that type of threat, and checkpoints where the IT department can analyze the traffic going through the network. In IT, bandwidth is plentiful and the network overhead associated with security is generally not a major factor. Considering Industrial IoT Networks IIoT networks, on the other hand, can span many miles with potentially hundreds of thousands of data points. An IIoT network likely consists of small embedded devices with long lifespans, making it very efficient. However, they are generally not like the Windows operating system, which is consistently conducting massive updates. Some embedded technologies don’t allow any updates, making it essential to carefully select the best devices for a network. Having thousands of these edge devices is where organizations will begin to see IT/OT convergence – many more points in the field where threats could be coming into the IT network. Industrial organizations today are creating a connected infrastructure with IP-enabled sensors or IP/IIoT-enabled Access Gateways. The data generated by sensors at an asset location can be valuable to more than just the central control system. This might mean M2M communication with sensors talking directly to each other. It may mean that multiple systems consume the live, real-time sensor data directly from the field. It may even mean that operators connect their sensors directly to the cloud or other back office systems. If there is a way to share critical data while addressing security issues that can help provide information to key data users, then that information becomes increasingly valuable. Security Through Obscurity is Not a Solution IIoT solutions often utilize the widely deployed security technologies from the Internet to avoid the custom, one-off solutions of past industrial security, when it was used at all. IP technology makes it easier to deploy and talk to sensors, but it also makes it easier for intruders to see and snoop on valuable data streams. Security through obscurity is not a solution. There are many common attack vectors for industrial devices that become even more relevant when considering the IIoT infrastructures and fully networked, geographically dispersed projects.

Today’s IIoT Security Challenges

For decades, Supervisory Control and Data Acquisition (SCADA) systems have played a significant role in industrial operations. Industries like oil and gas, electric power/smart grid, agriculture and utilities have implemented SCADA systems and networks to collect data and automate processes, and are always looking to automation systems for more effective ways to operate. The ability to collect more data from geographically dispersed field assets in remote locations has driven the need for enhanced communication technologies. With the emergence of continuously improving wireless machine-to-machine (M2M) technologies, networks have more access to data points than ever before. The number of sensors and data points collected will continue to rise dramatically with improved connectivity. This collected data helps operators improve operational decisions, save manpower and, in many instances, keep employees safe by avoiding dangerous environments. Today, industrial network operators are increasingly implementing end-to-end Internet Protocol (IP) connectivity or the Internet of Things (IoT), enabling more capabilities at the edge of these networks. This does not make SCADA systems obsolete by any means; it opens the door to greater possibilities of enabling new applications and analytics with every single data point being captured in the system. So What’s the Security Tradeoff? There are many implications for the concept of a completely connected enterprise in terms of network security. Critical infrastructure projects are only as reliable and secure as the technology serving them. Security, therefore, will ultimately be the limiting factor on how much IoT technology is deployed. With security, the traditional trade-off is either “easy to use” or “secure”— but not both. We often consider a third tradeoff as well of features, though in most cases, operators are not willing to trade off features, but it is certainly part of the equation. An operator striving for an Industrial IoT (IIoT) network must look at SCADA security, the convergence of Operations Technology (OT) and Information Technology (IT), and make a thorough assessment of what will allow them to achieve a secure data communications network. Some of the top security challenges for the IIoT today include: With more data being transported than ever before, it’s important not only to secure assets, but to secure the communication link itself. Traditionally, SCADA systems have been on the outside of a firewall from the corporate IT network. Newer SCADA systems that use Ethernet devices are more security focused with measures such as VPN, secure sockets, encryption and dedicated log-ins on the devices. One Final Thought There are many benefits to the concept of a completely connected IoT system, but this also implies more crossover between IT and OT systems. Companies need to prioritize security in their quest to create end points for all of their field assets. Some industries, like the smart grid, are already experiencing mandates that ensure a more cyber-secure network. With others, however, it is still up to the organization to make security a top priority.

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.