Nine Perfect Gifts to Get the App Developer in Your Life

Buying gifts for anyone is a struggle, but buying gifts for someone who loves technology can be even more of a challenge. As connected homes, vehicles and Smart gadgets take the world by storm – there are many options at a variety of price points. This year, go for gold and get something they will really enjoy. We have just the list to get you started. Without further delay, from the outrageous to the useful, here are nine gifts that any app developer will enjoy! Intel Compute Stick A full-fledged Windows 10 computer, the size of a USB stick, that you can plug into any HDMI display like a TV or monitor, is sure to please the special app developer in your life. They can carry it around in their pocket or on their keychain and they’ll always have a PC handy.   Gunnar Computer Glasses Work, emails, social media, or games consume a lot of our time. Studies show that it only takes a few hours in front of a screen to cause computer vision syndrome or digital eye strain. Engineered to eliminate eye strain and block blue light because people, on average, are spending 8-10 hours a day on their digital devices. Gunnar is the only patented computer eyewear recommended by doctors to protect and enhance your vision – the perfect option for the practical gift giver. Pixelated Hand Shaped Mouse Looking for something a little less serious? This gift is sure to make a splash at the office! This quirky pixel mouse replicated the ‘pointer’ cursor type most commonly seen when you hover over a link on a web page.     Cooking for Geeks: Real Science, Great Cooks, and Good Food This fantastic book, written by Jeff Potter, offers some of the science behind cooking and answers burning questions such as, “how quickly will a pizza cook in a 500-degree oven?” It’s orientated towards anyone with a technical approach to life, so is more likely to suit a developer than a designer.   IROLLER: A Reusable Liquid Free Touchscreen Cleaner for Smartphones and Tablets We are SURE every developer has this problem and, no surprise, we have the low-cost answer. Just roll this little stick over the touchscreen of your smartphone or tablet and instantly remove fingerprints, smudges, and smears. Your screen will look better, and you can stop spending money on wipes and sprays.   LED Fiber Optic Men’s Jacket Yes, it’s incredible: This lightweight jacket includes 3/4 miles of fiber optic cables and LEDs! It’s the coolest jacket we’ve ever seen, and if your developer has to go to a conference or company party, this will be the must-pack item. Switch between four colors and keep it on for eight hours on a single charge!   Solar Phone Charger As long as the sun is around (so another 5 billion years) you’ll never run out of battery for your phone again. This high-tech charger works anywhere and is the perfect useful tech gadget for your Developers next epic adventure.     All of these gifts are fantastic but if you want to get your special app developer something a little more meaningful, and by meaningful we mean home-made, try hitting up a thrift store or a yard sale for any spare computer parts. Making Items like floppy disk coasters or keyboard key paper clips/push-pins are sure to be a hit but not to your wallet.   No matter the size of your budget, we hope this gives you some fun and useful ideas for the app developer or techie in your life!

IIoT News Round Up: 2018-Focused Headlines

As the year winds down, industry thought leaders and publications are beginning to release their top trends and predictions for IIoT in 2018. From what we’ve seen circulating around the top news sources, there looks to be a lot in store for Smart Cities and utilities in particular. Reports have shown time and again that IoT devices are being deployed and disrupting industries at an incredible rate. While this has brought a lot of new opportunities to the forefront of many industries – we’re all aware of the lurking giant that needs to be dealt with – security.  Security has been a concern and topic of debate since the beginning of IIoT, but perhaps in 2018, we’ll see the challenge addressed in new ways. The good news is that we’re not shying away from the topic and we’ve encountered it as a common theme in recent headlines – especially in relation to Smart Cities. Here are a few top news stories that stood out to us: The Security Tipping Point An article recently featured in InfoSecurity Magazine (@InfosecurityMag)  by @philmuncaster examines the ongoing security challenges when it comes to IIoT projects for Smart Cities. The article reveals that an international poll by the Wi-SUN Alliance found security as the biggest barrier around the world: “The global, standards-based non-profit polled IT leaders in the UK, US, Denmark and Sweden who are investing in these kinds of IoT projects. It found that although half have a fully implemented strategy already in place, 90% said they struggled to implement a plan and 36% said they found it ‘extremely difficult.’ “ An eWeek (@eWEEKNews) article by @editingwhiz, featuring predictions by leaders in IoT for 2018, echoes the same sentiments, but predicts that service providers might take the issue into their own hands: “Paul Martini, CEO and Co-Founder, iboss: Better IoT network security will come to the fore: ‘The industry will continue to be plagued by IoT botnets and malware. 2018 will be the year that enterprises and service providers finally realize that waiting for device manufacturers to improve hardware security is a losing proposition and take it upon themselves to secure their networks against compromised devices. An increasing number of enterprises will deploy network security solutions that are designed specifically to protect large numbers of connected devices.’” Additionally, a Sys-Con post recently published by @S_Allen_IIoT , also emphasized the importance of security in 2018 and offered insight into solutions: “However, even with a secure communication link, if the individual devices that are connected on the OT side become compromised and an intruder gains access to that communication link, they can push malicious data, cause denial of service (DoS), or introduce malware or viruses to the entire network, IT side included.” Allen recommends the following: “Companies need to prioritize security in their quest to create endpoints for all of their field assets. Some industries, like the smart grid, are already experiencing mandates that ensure a more cyber-secure network. With others, however, it is still up to the organization to make security a top priority. There are technology providers available that are security focused and will provide those extra layers of security to the OT network.” Investment Will Grow in Utilities The Future of things (@Future0fThings)article by @morakhiya2711 looked at IIoT investments and the industries in the near future, and it looks to be an exciting time for utilities, among with manufacturing and transportation. “In addition to the funding of start-ups, overall investment in IIoT technologies and services is growing rapidly with few signs of slowing down. Through 2020, the industries that are expected to invest the most in this area are manufacturing, transportation, and utilities. Last year alone, spending reached $178 billion, $78 billion in transportation and $69 billion in utilities, as these industrial sectors leveraged the deployment of intelligent, networked devices to operate smarter and offset risks.” As investments in IIoT go up, so do the security risks. Based on the buzz in leading IIoT publications, perhaps we will begin to see new efforts to create secure end-to-end IIoT networks, as companies battle both disruption and the need to protect data and assets in 2018.

Where is SCADA Headed?

With all the chatter around Industrial IoT (IIoT) and the disruption it brings to business operations, where does Supervisory Control and Data Acquisition (SCADA) technology for industrial organizations stand? Is it still relevant or will it be phased out? As businesses begin to recognize the benefits of modern technologies and deploy them across industrial networks to increase connectivity between the field and business office, this is a legitimate question. However, while organizations are working to modernize their operations, we are finding that SCADA is in no way becoming obsolete – at least for the foreseeable future. Instead, we are starting to see more modern approaches to SCADA. For example, there are now app-based small SCADA systems that are designed to fit modern network needs while putting less of a strain on technology budgets. Research also indicates that the SCADA industry will continue to drive forward.  According to a recent report, the global Supervisory Control and Data Acquisition market was valued at $7.5 billion in 2014. It is expected to reach $11 billion in 2021 and is anticipated to grow at a CAGR of 7.40 percent between 2016 and 2021. In the  Oil & Gas Market alone it is estimated that SCADA will be Worth $4.52 Billion by 2022. We Still Need SCADA Clearly, SCADA will remain an essential network component; however, we will likely begin to see modern technology have a transformative impact on SCADA. As industries increasingly adopt automation technologies to streamline monitoring and process control, technology providers are working on ways to better integrate SCADA and IIoT technologies into the network. With new programmable app server software platforms now available that combine 900 MHz RF-based technology with the ability to program and host third-party applications, there are clear signs that the SCADA systems of tomorrow will be designed to meet modern data and production demands. The newly available, app-based small SCADA systems that run on app server software platforms are already an indicator of a much more cost effective option than traditional SCADA. This gives smaller businesses an affordable way to manage data and control their network. Reducing Hardware to Drive ROI App Based Small SCADA solutions achieve the same critical SCADA functions of larger systems, including data management, logic execution and visualization – without the use of PLC-type hardware. The ZumDash Small SCADA App, for example, is programmed into FreeWave’s ZumLink radios to achieve collection, monitoring and control functionality.  Furthermore, it provides a “dashboard” with status and trend visualization from any web-based device. Using Node-RED for simple, easy programming, the app-based small SCADA system was designed with minimal CAPEX and OPEX. The result is a system that increases production, optimizes operations and mitigates the risk of a catastrophic event. And the beautiful thing about a programmable app-based SCADA system is that it is customizable to individual network needs at a fraction of the cost of a traditional SCADA setup. As technology and automation demands continue to drive innovation, we expect to see an increase in advanced approaches to SCADA. As we look towards the future of SCADA, we see IIoT enabling better operations and control of the network, faster ROI, safer operations and reduced downtime.

Rugged Wireless Radios for International OEM Applications

For original equipment manufacturer (OEM) and military applications around the world, operational success requires reliable data delivery. This 100 percent achievable with rugged wireless radio solutions. As Industrial IoT pushes for more connectivity, coupled with the surge in commercial use of unmanned aerial systems (UAS), the pressure for around the clock command and control (C2) links is higher than ever – and it’s happening on a global scale. To support these growing needs, FreeWave has announced the general availability of the MM2-5 Watt 1.3 GHz (13X5W) integrated radio. Offered in a small package for ease of integration, the MM2-13X5W features an external 5 Watt output, making it ideal for UAS, OEM and military applications where reliability is paramount and space is at a premium. These solutions can be leveraged to deliver important data in the U.S. and abroad for a wide variety of mission critical applications. The MM2-13X5W has a lot to offer starting with it’s built in versatility and the ability to function as a gateway, endpoint, repeater or endpoint/repeater. Security is a priority – each MM2 13X5W is equipped with proprietary frequency hopping spread spectrum (FHSS) technology. It also features a line-of-sight range of up to 90 miles, and  can be deployed in international settings where lifesaving communications and security are paramount. A number of these use cases include UAS applications, soldier training, environmental monitoring and other government and defense needs. Next Generation UAS Applications As the commercial drone market rapidly expands, the number of use cases is filtering into new markets. Beyond the military scope, commercial UAS applications have the potential to completely transform the monitoring, control and data analysis processes for many industries. The MM2-13X5W is equipped to support this next wave of these UAS applications, including: Pipeline monitoring as a service – drones can help maintain safe and consistent visibility of the pipeline and deliver that critical data to the network. The small form factor and proven reliability means uninterrupted data transmission in remote settings. Homeland security apps –  recently, in the U.S., there have been many heated conversations around border protection. Many drone supporters believe that UAS can offer a cost effective way to monitor the nations borders. The U.S. border patrol even recently solicited contractors to build facial recognition drones. Drone delivery service – As we look at the future use of commercial UAS, drone delivery is a popular topic of conversation. We’re also seeing use cases where drones can deliver food and medicals supplies to high risk areas in third world countries. Precision Agriculture: Drones can enhance crop visibility, enabling smarter decisions and more food output. The potential impact of drones in precision agriculture is becoming recognized throughout the world. As the possibilities for commercial UAS continue to multiply, so does the need for secure C2 links for successful operations – and this is where the MM2-13X5W is an ideal solution. Additional Product Features The MM2-13x5W also features the following: 115.2 and 153.6 kbps selectable RF data rates TDMA, Super Epoch TDMA, and AES Encryption Performance tests from -40 degrees Celsius to +85 degrees Celsius Data link range up to 90 miles For more information about the MM2-13X5W, please visit: https://www.freewave.com/mm2-m13-series/

Intelligent Decision Making in Precision Agriculture

Modern businesses are making intelligent business decisions thanks to the Industrial IoT and its push towards increased connectivity. In precision agriculture, new technology has the potential to be a game changer for crop management, enabling more visibility over crops and intelligent decision making that directly impacts food output. However, according to a recent article from CropLife magazine, while farmers are leveraging automation, the precision agriculture industry as a whole is relatively new in comparison to the traditional agriculture industry, and so is the adoption of IT technology. The exciting news is that farmers are increasingly turning towards automation to streamline operations. As automation and connectivity are adopted for precision agriculture, there is an emerging market for drones that is ripe with possibility. A recent article focusing on drones in agriculture reports, “With precision agriculture, farmers can now rest assured that they are making crucial decisions correctly and intelligently – made easy through drone analytics.” Drone manufacturers   are actively working to make technology that they believe will change the game for precision agriculture. They aim to improve food production and more efficiently distribute pesticides and water. Drones may also aid in disease management for the diseases that rapidly spread through crops. With the use of cameras, drones are also able to offer farmers real-time visibility into the health of their crops. With the rise of drones in the commercial and industrial sectors we see a lot of opportunity for drone manufacturers, technology providers and farmers alike. What we also see as a key to success in all these areas is technology that performs with consistency and reliability. In the case of drones, without secure and reliable command and control (C2) links, drone performance will suffer, and as a result so will the important data that farmers will find essential to making intelligent decisions. Command and Control Links There are technologies available that have proven to unfailingly support critical drone operations. In fact, after decades of serving mission-critical applications in government and defense, the same C2 capabilities of advanced wireless data communications have begun to migrate into the commercial and industrial drone markets. Today, there are a number of secure wireless data communications solutions available that enable reliable C2 links and have been trusted by the government and defense industry for years. Additionally, there are solution providers that offer multiple frequencies for C2 links offering unmanned systems manufacturers a portfolio of options to deploy. In addition to frequency options, when the appropriate security measures and encryption capabilities are in place, C2 links can be better protected to thwart malicious attacks on unmanned systems. For the precision agriculture industry this means less downtime and reliable drones for operations that are critical to the health of the crop. Drones and other modern IT technologies are disrupting the precision agriculture industry, but there is substantial potential for a big impact on the farming industry as a whole. As drones are developed to carry out these applications in precision agriculture is especially important to ensure they are being created with the C2 links that will support modern connectivity needs.

Network Management Solutions for IIoT

The shift towards digital technology solutions and the rise of the industrial Internet of Things (IIoT) have transformed operations for many organizations. Currently, there are a number of wireless communication solutions available that are specifically designed for IIoT, M2M and SCADA networks. These technologies monitor, collect and transfer critical data in challenging environments to support mission critical use cases. As technology continues to advance, Sensor-to-Server (S2S) technologies have emerged to support advanced data practices, such as predictive analytics. IIoT has not only increased the number of devices in the field, but has also brought the OT and IT departments closer together. This convergence is challenging for many businesses as they look to find technology that will meet evolving demands. IT, for example, needs better field visibility as industrial networks become more connected every day. This need has driven a strong demand for detailed, real-time information solutions that will support IT network operations. Having a network management system (NMS) at the access layer helps meet those needs and companies like E2E have begun to offer NMS solutions specifically for IIoT, M2M and SCADA networks. These networking solutions help overcome some of the major visibility issues from an IT perspective and are suitable for operation in challenging environments . FreeWave’s NMS Partnership FreeWave recently announced a new technology partnership with E2E Technologies. E2E’s Stingray Network Management System (NMS) will support FreeWave’s WavePro™ wireless communication solutions. Stingray is optimizable for IT professionals looking to manage individual components of a limited IoT or M2M communications system within a larger IT network management framework. Companies in energy, utilities, municipalities, government, oil and gas, and more will benefit from this solution as they now have a technology solution designed to help bridge the IT/OT convergence gap.

Women in Tech: Hedy Lamarr

It was back in 1941 when Hedy Lamarr, an Austria born actress, together with George Antheil co-patented a “secret communication system” which allowed radio control of torpedoes that could not be easily discovered, deciphered or jammed. Her secret: frequency hopping! Coordinated, rapid changes in radio frequencies would literally “hop” in the radio spectrum, thus evading detection and the potential of interference, in other words, being suppressed or jammed. Even though her idea was ahead of its time and not implemented in the U.S. until 1962, when it was used by U.S. military ships during a blockade of Cuba (after the patent had expired), it is now the basis for modern Frequency Hopping Spread Spectrum (FHSS) wireless communication systems. FHSS wireless systems are very resilient when it comes to impairments such as interference (deliberate or coincidental) and “jamming.” Other effects can be observed when wireless signals travel through space, such as the “multipath” phenomenon, simply because they use only very small amounts of radio spectrum at a time and don’t dwell (or remain) at that frequency long, instead “hop” to another frequency quickly. Statistically, chances are that the signal does not “land” at the interfering frequency, thereby successfully evading the jamming signal. This makes Denial of Service (DoS) attacks on FHSS systems very difficult, albeit not completely impossible. Information Pioneers – Hedy Lamarr Edition As part of BCS, The Chartered Institute for IT video series, Miranda Raison presents Hedy Lamarr for the “Information Pioneers” series and dives deeper into the history behind one of wireless communication’s leading ladies who, together with George Antheil, pioneered the beginning of a communication revolution. Hedy Lamarr would’ve been 101 years old this November.

Seismic Shift in IIoT Monitoring

There’s been a seismic shift in monitoring earthquakes via the  Industrial Internet of Things (IIoT) with advanced Machine-to-Machine (M2M) technology have reshaped the industrial communication industry. Every device or machine along the network, even at the outermost edge, now has the opportunity to be fully-connected for automated collection and delivery of information. As Sensor-2-Server (S2S) communication technology evolves to keep up with the demand for this connectivity paradigm, new efficiencies are created and Big Data is available to drive actionable intelligence. Seismic Shift Data that Saves Lives The sheer quantity of available data, combined with the speed of automation can support mission critical applications that are designed to save lives. Research centers can leverage IoT networks to relay critical data in real-time from areas where earthquakes are a common threat to people living nearby. While natural events like earthquakes and volcanos are not avoidable or fully predictable, an IoT network can potentially help reduce the level of devastation through close, reliable seismic monitoring via highly sensitive and advanced sensor technology. S2S communications monitor and send data from remote areas where Earth changes are first detected, to the monitoring authorities who are closely tracking seismic activity. S2S solutions leveraged for early detection of these events can enable authorities to warn citizens in advance to take appropriate precautionary measures. When robust, rapid, real-time monitoring is combined with effective emergency communications, human casualties can be significantly decreased. Seismic Shift and the Ever Changing Landscape IoT has been adopted at such a rapid pace that the demand for modern, sophisticated communication technology is driving constant changes in remote, industrial communication networks that will further advance applications like seismic monitoring. These changes have clearly disrupted the traditional Supervisory Control and Data Acquisition (SCADA) market. While SCADA systems are not obsolete, industries like environmental monitoring will continue to leverage new technologies designed to help seismologists make more informed decisions than with just SCADA alone. Now, network operators can evolve and adapt their monitoring programs over time through the IoT with edge devices that allow third-party software applications to be deployed network-wide. This has not only opened new doors for software developers, but it opens up the opportunity for advancements in environmental monitoring to further improve natural event monitoring. Fast and accurate data transport from the sensor networks in seismic monitoring therefore requires robust and reliable technology that doesn’t fail in remote and sometimes harsh environments. RF technology, for example, is advancing to help field crews make intelligent decisions and closely monitor the elements that can help delivery early warning for natural events. Find us at JavaOne this Week

Sensor-2-Server: Benefits & Security for IIoT Communications

*This is part of a series of blogs examining Sensor-2-Server (S2S) communications, development, security and implementation. For the past two weeks, we’ve taken an in-depth look at what Sensor-2-Server communications are, how to implement these systems, and some of the specific aspects of communication that these systems facilitate. This week, for our final installment, we’ll examine some of the benefits, as well as security considerations, for S2S communications. Benefits of Sensor-2-Server Communications From a technology partnership perspective, Big Data vendors face the challenge of comparing data in motion versus data at rest. If the data has already moved through a SCADA system and has been aggregated, changed, stalled, or is not quite granular enough, it can be difficult to deliver high-value predictive analytics. The concept of predictive analytics is that an operator can make an accurate estimate that certain things can happen during operations. However, the operator needs to determine what the drivers are for the predicted actions to happen and must look at active data to determine if this is, in fact, happening. Without insight into the active data in motion, they are lacking an essential piece of the predictive analytics. This ability to compare data in motion at the access layer could benefit Big Data vendors when it comes to predictive analytics because it allows them to give higher value to their customers, which drives additional revenue. With S2S technology, they can deploy a tiered application infrastructure that allows data to intelligently move from one point to another. S2S also enables operators to go beyond a legacy SCADA data network. To operate a SCADA network, it requires a lot of institutional knowledge to truly understand, manage and work within the environment. S2S expands beyond moving the data into SCADA systems and allows operators to leverage more advanced technology, like predictive analytics. Essentially, S2S communications provide the opportunity to take advantage of new advanced tools, but the operator doesn’t necessarily have to sacrifice the institutional knowledge built into the SCADA data systems. As new generations enter the workforce, it’s likely that there will be a shift and some of that institutional knowledge will be replaced with technology that will allow operators to do more than they ever could before. The addition of new technology and IoT networks is where operators are starting to see the functional lines blur between the IT and production groups. As more technology is leveraged, these two disparate groups will have to work together more often. There is now a drive for a more holistic picture of what is going on in IT, what is going on in the field, and whether the technology used will be compatible with future needs. SCADA will likely always have value for industrial communications but, going forward, there will be an increase in the use other technologies as well. Additionally, with more technology physically in the field, there is always going to be a focus on data security. Security Sensors at the access layer present interesting security challenges. For example, consider a data concentrator sitting on an oil pad that is collecting data. This device is collecting data from a number of sensors and has data logging capabilities, which also means the other devices sitting at the remote site contain historical data. Technology providers need to insure that the technology used is taking advantage of all the security features that are available to make sure their data is protected through a variety of means including encryption, authentication, virus and intrusion protection, and by being physically tamperproof. With the growing interest in IIoT, the system is providing a communication path with highly valuable information. These sensors may be running an application on the edge of the network, and many of these devices are using IP. When there are Ethernet and IP devices going out to edge devices in the field, each one of those devices has the potential to become a threat to the entire corporate network if they’re not secure. Operators in IIoT environments need to be concerned with everything that could be introduced to the network at every single connection point. Data protection data is a fundamental and extremely important element in determining the effectiveness of S2S communication. Technology vendors must be mindful of security in every step of the design and installation process, and operators must require security features that will protect their data and networks. In addition to data security, the threat to physical infrastructures in very remote locations is driving the need for new security solutions such as intelligent video surveillance designed to maximize security and minimize cost. S2S solutions need to be physically capable of delivering the bandwidth to enable these new solutions. Where Do We Go From Here? Industrial communication is changing in the sense that IIoT enables the possibility for every device in a network to be connected – including those in the outer access layer. This has created a convergence of OT and IT operations in many instances or – at the very least – has brought the two departments to a closer working capacity. IoT and technology at the access layer enable the option for Sensor-2-Server, a form of intelligent communications that can move the sensor data to a specific server for detailed analysis. New data and technology are allowing operators to do things they’ve never done before, such as predictive analytics. As this shift continues, SCADA is not becoming an obsolete technology; rather it will become a piece in the bigger technology picture. Any operator choosing S2S technology, or any technology for that matter, must carefully consider the options and keep security as a top priority.

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.

Did you find what you were looking for?

Please let us know if you didn’t find what you were looking for so we can help make the site better for you.