Connected Oil Fields in Peru

China National Petroleum Corporation (CNPC) is one of the largest energy companies in the world with operations in 28 countries. In May 2017, CNPC announced it would invest $2 billion in an oil and natural gas block in the southern part of Peru. Beyond the recent investment, CNPC has had a presence in Peru for more than 20 years, including oil fields in the northern portion of the country. To optimize operations in 2009, CNPC ran a pilot test in Piura, Peru to find the ideal communication solution for monitoring, collecting and transporting data. Piura is a coastal city located near the equator where the average temperatures hover around 95 degrees Fahrenheight. To connect the oil fields into the Supervisory Control and Data Acquisition (SCADA) system, CNPC needed a communication technology built to withstand harsh weather, such as high temperatures, large amounts of rain, wind and a variety of other environmental factors. The goal of the pilot was to have several test sites reporting to a gateway and then into a SCADA system to monitor several pumping devices and equipment including: Pump of Controller (POC), Pump Cavity Progressive (PCP), Balance Oil Recovery System (BORS) and plunger lift. FHSS for Oil and Gas In the Piura test case, the distances between links weren’t long, but depressions, canyons and steams made line-of-site (LOS) a challenge. CNPC, who tested multiple Machine-to-Machine (M2M) communication solutions in Piura, found that FreeWave’s Frequency Hopping Spread Spectrum (FHSS) technology solutions offered the most reliable connectivity in comparison to other solutions used during the test. FreeWave solutions also use repeaters that helped establish and maintain connectivity despite the lack of LOS. Additionally, the links were established easily and fast in comparison to other solutions that were a part of the test. During the entire three-month pilot, the FHSS-based M2M solutions did not lose communication or the ability to send data to the SCADA system. Industrially hardened, ruggedized FHSS technology has proven to be reliable in in many oil and gas installations around the world. As the Industrial IoT (IIoT) drives connectivity, we continue to see the demand for reliable communication links in environments like Piura that can have challenging conditions. FHSS technology offers not only a reliable, easy to install communication link, but it easily integrates into today’s modern IIoT networks. To get the full story about the test sites in Piura, read the case study: https://www.freewave.com/case-studies/china-national-petroleum-company/    

Can Oil and Gas Keep Up with Digital Disruption?

The oil and gas industry has faced transformational potential in the last several years. As a critical piece of infrastructure for nearly every industry – and the economy – it’s ability to keep pace with the lightning rate of technological upheaval has been challenged. The convergence of IoT, the Cloud and Big Data has created a whirlwind of possibilities, but the major challenge will be whether the industry can successfully unify its data collection and transport at the necessary scale. There are several factors that will determine the ultimate success of this data: hardware capable of handling the consistently rugged environment, reliable connectivity, a general consensus on the best programming language for widespread use, and the applications capable of transforming Big Data into Smart Data. Rugged Hardware Most well pads are set in remote environments where the conditions are rugged or downright extreme. Not only are RF communications greatly affected by these conditions, but as the connectivity shifts toward (potentially) remote WiFi, then the devices must not only be more sophisticated, but that sophistication must be ruggedized as well. We recently published a case study that shows how our radios held up in a cool use-case in Antarctica for data collection in an extremely harsh environment. Granted, most oil companies are not looking Antarctica as a possible drilling location, but the visual does a good job of showing just how rugged the hardware needs to be. It cannot fail when delivering data to companies, as that data is more important than ever. Reliable Connectivity There are several different methods for connectivity at remote locations, but two that are gaining ground on traditional systems are Frequency Hopping Spread Spectrum (FHSS) and WiFi. Of the two, WiFi faces the greatest obstacles because it relies on several different transfer or booster points, but its strengths as a transport method are starting to outweigh some of those challenges. FHSS has been around for quite a while, but the technology, surprisingly, is still somewhat misunderstood. The ripple effect from its applications are felt throughout many industries, but the key differentiators are its consistency and reliability. Programming Languages Today, there is hardware on the market that is capable of putting proprietary, third-party applications at the edge. But, in order for these apps to be effective, the industry needs to find the programming language that best serves the need. It’s similar to when personal computers were first hitting the market. Each PC company wanted its computer to run its own kind of software, but the industry ultimately realized that best chance for success was to create a standard. Since then, even though open source is still a critical piece of software development, most PCs and other platforms can basically run the same kind of software. This same approach to standardization needs to be taken with programming languages or the battle for supremacy will continue to fracture an industry at a time when it needs cohesion for maximum growth. Edge Applications Speaking of finding a unified programming language, the result of that will be an explosion of applications that can be deployed on the aforementioned hardware. Once companies have the ability to create these applications to fit specific needs, then they will be able to take Big Data and turn it into Smart Data. A hallmark of the Industrial IoT, and what separates it from basic machine-to-machine communication, is the intelligence. Smarter applications means smarter data means more efficiency. Many of these platforms are still in their infancies, but we’ve seen evidence of a strong groundswell bringing these to the forefront. Ultimately, if these four components can come together in the right way, the oil and gas industry will be able to reap the benefits. And, frankly, they will be reaping these benefits long before other industrially oriented markets. Aligning these needs is not easy, but the potential exists as long as oil and gas companies embrace the disruption and unify the data.

FreeWave to Attend Three Industry Events This Week

FreeWave is taking on three major events across the globe this week to showcase our latest and greatest Industrial IoT Solutions, including a couple new product releases (read about them here and here).  We will be attending IWCE, Internet of Things North America and IoT Asia. At IWCE and IoT Asia, we will be showcasing our latest technology in the exhibit halls. Find us at Booth #768 at IWCE and #E28 at IoT Asia. During exhibit hours, we will be offering live demos of our S2S communication solutions. We will also have company experts giving educational sessions at Internet of Things North America and IWCE. Here’s the rundown for each show: Speaking at IoT North America Sensor-2-Server: Execute Locally, Communicate Globally Wednesday, March 29 at 3:45 p.m. The idea of comparing data in motion (at the sensor level) to data at rest (in a big data server warehouse) with predictive analytics in the cloud is very appealing to many industrial customers. However, the problem is access to that data in motion at the sensor location. The increasing shift toward Industrial Internet of Things (IIoT) tends to bring up a lot of questions about the continued value of Supervisory Control and Data Acquisition (SCADA) systems that have traditionally served as the driver for monitoring and control in industrial markets. Although OT and IT are beginning to converge, there is still high demand for SCADA data. However, new technology offers the opportunity for data to be used in ways that were previously not possible, such as predictive analytics. This doesn’t make SCADA obsolete, as many operators are using it and will continue to employ it. Speaking at IWCE FAN, Smart Grid and SCADA: The Original IoT Thursday, March 30 in Room S224 from 10 a.m. – 11:15 a.m. The increasing shift toward Industrial Internet of Things (IIoT) tends to bring up a lot of questions about the continued value of Supervisory Control and Data Acquisition (SCADA) systems that have traditionally served as the driver for monitoring and control in industrial markets. Although OT and IT are beginning to converge, there is still high demand for SCADA data. However, new technology, such as Field Area Networking (FAN), offers the opportunity for data to be used in ways that were previously not possible, such as predictive analytics. SCADA may not be obsolete, but examine how it and FAN fit into this new world of smart grids and smart cities. Network Management and Cybersecurity for IoT: The First Step to Smarter Cities Thursday, March 30 in Room S224 from 11:30 a.m. – 12:45 p.m. IoT management systems that are able to extend control over a wide net of dissimilar technologies and provide relevant personnel with timely actionable-intelligence are essential components to these next-generation networks.  Examine the hardware and software of fully-automated management systems, able to function autonomously and “intelligently” beyond the network edge to collect, analyze and decide on the best course from a set of alternative actions. Then explore the security goals you need to have in place with the influx of IoT information and the resulting IT/ OT convergence, including who is responsible for the overall security of IoT management systems. Products Featured at IWCE Booth (#768) and IoT Asia Booth (#E28) WaveContact Family (https://www.freewave.com/wavecontact-wireless-oilfield/) – WaveContact Modular wireless systems provide rugged, simple and flexible communication solutions that are easily and quickly deployable. WaveContact products interface with a wide variety of sensors deployed in industrial and critical infrastructure markets such as oil and gas, electric power, water and wastewater and environmental monitoring. The product line is built for short-range field applications where simplicity and ease of use in Class 1 Division 1 hazardous locations are critical for success. ZumLink IIoT Programmable Radio (IPR) (https://www.freewave.com/products/zumlink-ipr-iiot-programmable-radio/) – The industry’s first wireless IIoT radio capable of supporting third party applications for Edge and Fog Computing in Industrial IoT (IIoT) communication networks. FreeWave’s IPR can support JAVA, Python, C, C+ and GO, and it connects to any IT device or sensor. The platform is capable of hosting third party and proprietary IoT applications for energy, utility, municipal, smart city, government and military use cases. ZumLink Z9-C and Z9-T (https://www.freewave.com/products/zumlink-900-series/) – Serial radio modules for OEM and Embedded wireless applications. The ZumLink Z9-C and Z9-T are ideally suited for unmanned systems and other industrial machines and solutions that require highly reliable, high-speed data communications and networking. WavePro (http://go.freewave.com/l/68372/2015-12-16/37myq8) – Designed to secure and transport Voice, Video, Data and Sensor (VVDS™) information, this cost-effective, high-speed, rugged wireless communication platform is specifically designed for outdoor industrial locations and has proven reliability in extreme environmental conditions. It’s an ideal field area network solution for oil and gas, utilities, mining, power plants, municipalities, disaster recovery or for any other applications that require remote and resilient Wi-Fi connectivity in nontraditional settings. Are you attending any of these events?  Be sure to stop by the IWCE and IoT Asia booths for a demo of our latest offerings. Or, stop in for one of our educational sessions.  

IT/OT Convergence – The Impact from the Industrial Internet of Things

Without question, the number of connected sensors and devices on your IIoT network are going to increase, and also without question, the volume of data created by these devices on your IIoT network are going to increase as well. Both increases are intended to improve operational efficiency and streamline business processes. As a result, your Information Technology (IT) and Operational Technology (OT) departments will likely need to adopt new strategies.  An increasingly popular strategy is IT/OT convergence. The Bandwidth Burden For many industries, SCADA and M2M networks have historically used serial communications for operational networks. This has changed and is changing for many. As networks transition from serial to Ethernet communications, data is now freed for routing to any business system. There is a new twist for SCADA, M2M and now IIoT networks that have limited bandwidth capabilities. With more business systems needing critical data to improve business process, utilization of bandwidth on networks with already-limited bandwidth is also increasing based on the traditional Poll/Response or Request/Response model. To reduce the bandwidth burden, systems are now transitioning from Poll/Response operation to a Publish/Subscribe model. There are several benefits to the Publish/Subscribe model. Sensors or devices in bandwidth limited networks can publish data when events change or select criteria are met. This reduces the demand for network bandwidth in two ways; 1) there is no prerequisite Poll message, and 2) devices publish when needed. Publish data is routed to a Broker or Publish/Subscribe server that operates on networks where network bandwidth is not a limitation so any number of subscribers can subscribe needed data without burdening the IIoT network. While the Publish/Subscribe model is a significant improvement to IIoT network efficiency, it is not a panacea for all operational information. Network monitoring systems, e.g. SNMP based systems, will still need to poll devices to gather operational, performance and prescriptive data; essential for proactively maintaining an efficient and operational IIoT network. Secure Devices to Support Convergence Newer sensors and devices are also being designed with security in mind because no legitimate manufacturer wants their IIoT device to be part of a DDoS attack, as we saw in 2016 with the Mirai DDoS attack. While IIoT device security services and features are rapidly improving, it is still incumbent on OT and IT organizations to: Train personnel on network security because the human element can still be the weakest part of any network, e.g. phishing emails, Deploy networks with Defense in Depth so there are numerous barriers to obstruct and deter entry with timely audit trails to identify entry, and Perform periodic Risk Assessments and implement action plans. SCADA, M2M and IIoT networks are operating more as IT networks thanks to the close work between OT and IT groups and their convergence. Want to learn more on this topic? Join my presentation at the ENTELEC conference on Thursday, April, 27, 2017 at 2 p.m.

Network Management Solutions for IIoT

The shift towards digital technology solutions and the rise of the industrial Internet of Things (IIoT) have transformed operations for many organizations. Currently, there are a number of wireless communication solutions available that are specifically designed for IIoT, M2M and SCADA networks. These technologies monitor, collect and transfer critical data in challenging environments to support mission critical use cases. As technology continues to advance, Sensor-to-Server (S2S) technologies have emerged to support advanced data practices, such as predictive analytics. IIoT has not only increased the number of devices in the field, but has also brought the OT and IT departments closer together. This convergence is challenging for many businesses as they look to find technology that will meet evolving demands. IT, for example, needs better field visibility as industrial networks become more connected every day. This need has driven a strong demand for detailed, real-time information solutions that will support IT network operations. Having a network management system (NMS) at the access layer helps meet those needs and companies like E2E have begun to offer NMS solutions specifically for IIoT, M2M and SCADA networks. These networking solutions help overcome some of the major visibility issues from an IT perspective and are suitable for operation in challenging environments . FreeWave’s NMS Partnership FreeWave recently announced a new technology partnership with E2E Technologies. E2E’s Stingray Network Management System (NMS) will support FreeWave’s WavePro™ wireless communication solutions. Stingray is optimizable for IT professionals looking to manage individual components of a limited IoT or M2M communications system within a larger IT network management framework. Companies in energy, utilities, municipalities, government, oil and gas, and more will benefit from this solution as they now have a technology solution designed to help bridge the IT/OT convergence gap.

Seismic Shift in IIoT Monitoring

There’s been a seismic shift in monitoring earthquakes via the  Industrial Internet of Things (IIoT) with advanced Machine-to-Machine (M2M) technology have reshaped the industrial communication industry. Every device or machine along the network, even at the outermost edge, now has the opportunity to be fully-connected for automated collection and delivery of information. As Sensor-2-Server (S2S) communication technology evolves to keep up with the demand for this connectivity paradigm, new efficiencies are created and Big Data is available to drive actionable intelligence. Seismic Shift Data that Saves Lives The sheer quantity of available data, combined with the speed of automation can support mission critical applications that are designed to save lives. Research centers can leverage IoT networks to relay critical data in real-time from areas where earthquakes are a common threat to people living nearby. While natural events like earthquakes and volcanos are not avoidable or fully predictable, an IoT network can potentially help reduce the level of devastation through close, reliable seismic monitoring via highly sensitive and advanced sensor technology. S2S communications monitor and send data from remote areas where Earth changes are first detected, to the monitoring authorities who are closely tracking seismic activity. S2S solutions leveraged for early detection of these events can enable authorities to warn citizens in advance to take appropriate precautionary measures. When robust, rapid, real-time monitoring is combined with effective emergency communications, human casualties can be significantly decreased. Seismic Shift and the Ever Changing Landscape IoT has been adopted at such a rapid pace that the demand for modern, sophisticated communication technology is driving constant changes in remote, industrial communication networks that will further advance applications like seismic monitoring. These changes have clearly disrupted the traditional Supervisory Control and Data Acquisition (SCADA) market. While SCADA systems are not obsolete, industries like environmental monitoring will continue to leverage new technologies designed to help seismologists make more informed decisions than with just SCADA alone. Now, network operators can evolve and adapt their monitoring programs over time through the IoT with edge devices that allow third-party software applications to be deployed network-wide. This has not only opened new doors for software developers, but it opens up the opportunity for advancements in environmental monitoring to further improve natural event monitoring. Fast and accurate data transport from the sensor networks in seismic monitoring therefore requires robust and reliable technology that doesn’t fail in remote and sometimes harsh environments. RF technology, for example, is advancing to help field crews make intelligent decisions and closely monitor the elements that can help delivery early warning for natural events. Find us at JavaOne this Week

IIoT + S2S = Industrial Innovation at the Access Layer

The Industrial Internet of Things (IIoT) is moving at a rapid pace towards a higher intelligence platform to help collect, protect, transport and control data at scale from a myriad of sources. The access layer in the IT landscape is now particularly becoming an innovative technology environment with many new sensory solutions available to bring intelligence back to the core systems and analytics engines. Another area to consider when discussing IIoT are the individuals working with these technologies today, tomorrow and in the future. To start, the younger/millennial generation is entering the workforce in droves and is arguably the first generation open to big data integration and as part of IoT application solutions. Now that IT and Operations personnel work closer together than ever before, there is a need to be able to share the sensor data across the access layer. On the other hand, the older generation is trusting of the SCADA data systems they have been using for years, and are slow at first to adapt to the new intelligence created in the access layer. How Does an Enterprise Address this Transition? One strategy is IT/OT convergence, which promotes a single view of an enterprise’s information. Process-management tools help ensure that every person, machine, sensor, switch and device in an organization has accurate information in the best form and at the right time. As OT products—for example, programmable logic controllers (PLCs) and remote terminal units (RTUs)—become more aligned with IT infrastructure and applications, getting OT information integrated efficiently with IT systems at a process level is difficult enough for many companies. Getting IT and OT systems to work together to maximize business efficiency — while avoiding negative consequences, risks and pitfalls in the process —makes the task more challenging. However, thanks to new technologies, this process is becoming more practical and is creating the opportunities for huge economic benefits when these two disciplines are successfully integrated. Evolution of Sensor-2-Server (S2S)  (As described by Brandon Lewis, Technology Editor for IoT Design) S2S architectures define a method for communicating data collected by sensor platforms at the access layer of an IoT network back to servers at other layers, including but not limited to centralized servers in the core network. This type of architecture allows sensor data to be transmitted to points in the network that are best suited to the specific type of analysis, decision making, and control, which in an industrial deployment could be a SCADA controller located at the aggregation layer rather than a mass dump of heterogeneous data from hundreds or thousands of endpoints back to the core network. For critical IoT systems that require real-time or near-real-time analysis of sensor data, this more localized communications can speed decision cycles using data in motion rather than waiting to parse data at rest. Want to Learn More about S2S and the Future of Industrial IoT? For more information and a full discussion on S2S and the future of IIoT, please check out this recent interview with the IoT Roadshow and Scott Allen. You can also listen to the SoundCloud recording below!

Difference Between Data Sheet Transmit Power & Data Stream Transmit Power

Image courtesy of Flickr Creative Commons You need to link a two production sites together in your IIoT network in order to move critical voice, video, data and sensor data (VVDS™) between the sites by deploying access points. So, you consider using industrial Wi-Fi Access Points to implement this short-haul, point-to-point (PTP) RF link between the two sites. Short-haul RF links out to 8 miles are very doable using industrial Wi-Fi Access Points with directional antennas. You evaluate potential Wi-Fi Access Points from their data sheet specs. This is given, and you select one. Now, there is one specification that is commonly misunderstood and leads to confusion when evaluating MIMO capable Wi-Fi Access Points and using them in either PTP or point-to-multipoint (PMP) IIoT networks as wireless infrastructure. Confusion and mistakes arise from the difference between the transmit power stated on the product data sheet and the transmit power of a single MIMO data stream of the Access Point. For example, a 3×3 MIMO Access Point data sheet states the transmit power is 27dBm for MCS4/12/20 data encoding in either the 2.4 or 5GHz band. This is typical, and not a surprise, but what is this transmit power really stating. The FCC limits and regulates maximum transmit power from an intentional emitter, e.g. Wi-Fi Access Points. For Wi-Fi devices, the limits apply to the aggregate transmit power of the device. In above product spec example, the transmit power stated is the aggregate transmit power for the 3 MIMO data streams. Still good? Yes. You have a Wi-Fi Access Point and the total transmit power is 27dBm. Now, you design your short-haul PTP link using Wi-Fi Access Points and directional antennas. What transmit power do you use in your RF link budget? 27dBm since it is the transmit power for the Access Point for the data encoding and the band you plan to use. Right? No. While 27dBm is the total aggregate transmit power for the Access Point, it is not the transmit power of an individual data stream. The individual data stream transmit power is roughly 5dB less than the aggregate transmit power found in the data sheet for a 3×3 MIMO product. Difference in Transmit Power versus Aggregate Power 1 Data Stream transmitting at 22dBm    —  Aggregate Transmit Power is 22dBm 2 Data Streams transmitting at 22dBm  —  Aggregate Transmit Power is 25dBm 3 Data Streams transmitting at 22dBm  —  Aggregate Transmit Power is 27dBm So here it is… If you use the transmit power from the data sheet in your RF link calculation without correction, your actual link distance will be approximately half what you expect for the planned fade margin or the link reliability will be less than what you expect for the planned link distance. When designing RF links for the IIoT networks, make certain you are using the correct transmit power in your RF link budget calculations.

Sensor-2-Server (S2S): Implementing IIoT Communications

*This is part of a series of blogs examining Sensor-2-Server (S2S) communications, development and implementation. Last week, in part one of our series, we worked to define Sensor-2-Server (S2S) for IIoT communications, the access layer, and high-level applications. This week, we’re looking at the actual implementation of S2S communication systems. Implementing S2S Communications When implementing S2S networks, the operator needs to have a solid understanding of the following: What sensor data do I want to collect? What does the architecture look like? Where does the data need to come from and where does it need to go? For example, is it just going to SCADA or is it going to other data sources? These key details will drive the selection of the technology that best fits, in addition to the physical environment where it needs to transmit data. Carefully selecting the right pieces will help in architecting the network. In order to make S2S work, an operator needs to understand the physical environment needs. Everything is unique when it comes to RF in particular, and an operator must fully understand their environment if they want to be successful. The ability to collect the data is the first step in improving intelligence of Sensor-2-Server communication, which starts with technology selection. Four Tenets of Sensor-2-Server To establish the most effective S2S communications network, there are four core tenets that the technology must support: collecting the data, protecting the data, transmitting the data and controlling the data. Collect – The technology must allow the operator to collect data from any sensor – whether the sensors are analog or digital, wireless or wired. In some instances, the technology may need the extended ability to collect data at the access layer in a data logging fashion – allowing the operator to collect it, store it locally and make it available to SCADA systems. Protect- The intelligent communication must be able to protect the network against cyber-attacks. It must fix the boundary between the sensor and backbone network. Without ample security in the environment, many industries can be at risk for severe consequences such as compromised data or denial of service. Transport- The data must be transported to the appropriate location for analysis, no matter where the data is collected from. Operators should look for a system that offers seamless wireless data connectivity from Sensor-2-Server. Control- The Sensor-2-Server technology must add intelligenceto the access layer. Data logging is critical, and operators must have the capability to pull data in and control what happens with the data and where that data is stored. Users can leverage that data at the local level or back at the core network. S2S technology can be effectively deployed in the energy sector, whether it is oil and gas, electric power, solar, wind and or tide- based energy. Additionally, utilities, precision agriculture and irrigation can also benefit from intelligent S2S communication. With an intelligent communication system, operators can leverage new technology to improve the profitability of their businesses in ways previously considered impossible. For example, if an oil and gas company can use predictive analytics to estimate the price per barrel, the company can be more responsive – in real time – on its oil production levels. The data gathered from predictive analytics can help operators determine if production should be increased or decreased in certain areas, thus driving higher profitability. These technologies can also lead to cost reduction. For example, by deploying S2S technology at the oil well, the operator does not have to send as many workers out in the field to manually collect data. By enabling multiple benefits (profitability and cost reduction), S2S offers a value proposition that is getting the attention of many industrial operators. Next Week Next week, we’ll look at the benefits of intelligent Sensor-2-Server communications, as well as some of the important security considerations.

IIoT Top News: The Future of Utilities

As utility companies continue to track usage, consumers are growing equally cognizant of individual energy use as well, especially with the growth of private alternative energy practices such as home solar panels or wind power. That’s why this week’s IIoT top news is focused on the utility technology of tomorrow. This practice of selling privately generated energy back to the smart grid is in its infancy, but consumers now expect device connectivity to track, say, the amount of energy used by lights or the refrigerator during nighttime, off-peak hours. Because of that, the onus lies on utility companies to gather data and deploy advanced analytics that can be translated into relevant information for the average user. Now, February may have started out cold for some of us, but it is about to heat up down south with the Distributech conference in Orlando, Fla. This annual utility conference attracts over 11,773 attendees from 67 countries with 400 utilities, 480 plus exhibitors, 81 conference sessions and over 350 speakers. In lieu of this conference next week, we have decided to focus this week’s IIoT top news round-up on utility technology. Hope you enjoy this week’s round-up, and as always tell us what we missed! 2016 Power and Utilities Industry Outlook (WSJ) In the 2016 industry outlook for the power and utilities, it is clear automation and optimization will sprout more technologies for the industry advancement. John McCue, the U.S. Energy & Resources leader at Deloitte LLP believes that “Exponential technologies are accelerating the transformation of the power and utilities industry. Sector companies can respond by being open to change, assessing the potential benefits, and considering where and how to apply these emerging technologies.” Ten Energy Efficiency Predictions (Energy Digital) This list of top ten energy efficiency predictions has been gathered together by a team of experts to clearly forecast the future of energy and utilities. Energy Digital reports, “Digital marketing and marketing technology means utilities can do more with less and deliver tailored messaging based on the their consumer’s past experience with them, specifically past engagement with energy efficiency.” Tech Trends That Will Impact the Utility Sectore in 2016 (Huffington Post) The tech trends impacting utility in 2016, will be based on reliability and proven technology that will move them into the next era without missing a beat. Seyi Fabode with Asha Labs thinks that the utility industry is unmatched in it’s reticence “in adopting innovative technology. Despite its reluctance, the industry inevitably adopts the technology it resists.” As Water Utilities Move Online, Hackers Take Note (Governing.com) A recent report by the Department of Homeland Security indicates hackers are moving into the digital water utilities world. Tod Newcombe with Governing states, “Water utilities have in recent years — like pretty much everything else — become more reliant on the Internet to operate its networks of pipes and pumps.” Driving Battery Storage IoT, Electric Transportation Mainstream (Green Biz) The forecast of the next five years shows and increase in the use of the Internet of Things (IoT), which in turn is driving more battery storage for electric transportation in the energy industry. According to Barbara Grady with Green Biz, “Battery storage is changing the utility sphere by enabling solar plus battery systems to replace grid supplied power on residential and commercial buildings and by enabling micro-grids as a substitute to grid connection.”

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.

Did you find what you were looking for?

Please let us know if you didn’t find what you were looking for so we can help make the site better for you.