Who Needs Rugged, Outdoor Wi-Fi Networks?
When we think about Wi-Fi, we tend to lean towards the idea of connections that allow us to access our mobile devices. With a Wi-Fi connection we can stream videos, access our apps, check email, work and basically manage our digital lives. In non-traditional settings, the need for outdoor Wi-Fi connectivity is increasing, but it is accompanied by some unique challenges. Outdoor Wi-Fi Connectivity Industries that operate mostly outdoors are finding a greater need for Wi-Fi connectivity. Campgrounds are providing Wi-Fi as both an amenity and as a tracking and booking tool for managers and campers alike. Golf courses have deployed industrial-scale Wi-Fi networks to monitor irrigation, golfers and other assets throughout a course, and marinas are using Wi-Fi networks for both communication and vessel management needs. There has also been a strong uptick in the use of industrial Wi-Fi networking for security programs and disaster response. Companies can use high-speed Voice, Video, Data and Sensor (VVDS) data transport as building blocks for a security network capable of real-time monitoring. These Wi-Fi solutions are especially ideal for video monitoring, as they provide the bandwidth necessary to transport large amounts of data. Disaster response has also been an ideal application for industrial-scale Wi-Fi. Often times, cell networks can get knocked out during environmental disasters, effectively eliminating a critical component for communication. Today, organizations can deploy these Wi-Fi platforms on vehicles or other response assets that can enable communications in emergency or disaster situations. For any industry with outdoor operations, assets will be exposed to the worst natural elements – extreme heat, freezing temperatures, heavy snow, strong wind, dust storms and more. The challenge is finding a shorthaul, Wi-Fi solution that is rugged and secure enough to withstand the elements, but also advanced enough to enable new types of high-speed, high throughput application solutions. Rugged Wi-Fi Communication Solutions There are solutions designed for robust, secure transport of VVDS information for the edge devices in industrial communication networks. These rugged, shorthaul communication networks are specifically designed for outdoor Wi-Fi connectivity and have proven reliability in extreme environmental conditions. These types of solutions are ideal for oil and gas, utilities, mining, power plants, municipalities, disaster recovery or any other type of industrial applications. They also suit innovative deployments at golf courses, marinas, campgrounds and other settings that require outdoor Wi-Fi connectivity. How would you like to have Wi-Fi connectivity for your own outdoor networks? FreeWave just launched a new contest and the winner will receive their own network of rugged, outdoor Wi-Fi solutions. Enter Today! Contest Closed Enter today for a chance to win FreeWave’s award-winning WavePro WP201shorthaul and Wi-Fi solution. Contest entrants must provide a high-level account of the application of the WavePro, along with a description of the need for the platform. Winners will be announced at the close of the entry period. To enter the contest, please visit http://go.freewave.com/wavepro-network-giveaway. Submissions are due by September 30.
Thinking Outside the Box with Sensor-2-Server Applications
When we talk about Sensor-2-Server (S2S) applications, we tend to lean towards examples of common industrial communication networks for industries like oil and gas, utilities and municipalities. These application solutions typically incorporate the transfer of data from edge devices back to a specific server for use cases such as pump and tank monitoring or SCADA systems. However, as Machine-to-Machine (M2M) communications transform alongside the adoption of the Internet of Things(IoT), the types of applications that require connectivity at the edge are virtually endless. If we step back and look at the big picture, it is clear the entire landscape of technology is changing. With these changes we foresee the decline of standalone RF technology. Decision makers need Big Data in to make intelligent decisions that will transform their business operations and save them time and money. S2S communication networks are designed to address this challenge by driving intelligent transmissions from a specific location back to the appropriate server with the necessary intelligence to drive action for change. As technology evolves to meet industry demands, RF technology must adapt to meet new needs. We’re already seeing this happen in the industrially hardened, wireless communications industry. Some wireless IoT communication solutions providers are offering platforms to host third-party applications in addition to creating the communication links for devices. Sensor-2-Server Solution Along with this widespread technology change, we have begun to see new and exciting ways that modern RF technology solutions can be leveraged in an S2S network. Here are some nontraditional real-life examples of S2S applications: S2S communications to connect satellite communication dishes in remote locations where there is little to no cell coverage. The solutions extend communications and create a single POC for all of the remote locations. Monitoring cold storage food at distribution centers for a large US Supermarket chain where the cold storage warehouses are 500 feet X 500 feet and are located several hundred feet away from the monitoring room. RTK base station communications to improve data and correlation for an Electric Car manufacturer. Remote access to GPS Stations for improved data transfer in order to complete ocean mapping. Irrigation control on golf courses. For most industrial organizations there is a clear push towards complete connectivity from the sensors at the edge of the network all the way back to the central server. We often talk about data collection for familiar applications in oil and gas, utilities and smart cities. However, the reality of today’s technology transformation is that any industrial communication network, regardless of the industry, will likely need to connect its edge devices and eventually program its edge through third party applications in order to take the most cost effective approach and drive intelligent operational decisions.
All Aboard the IoT Railway
In many parts of the world, rail represents a major component of infrastructure – for the transportation of both humans and goods. In fact, railways are critical to some of the major industries like oil and gas, agriculture, and food refrigeration/transport. Much like those industries have, over the years, adopted automated, machine-to-machine (M2M) technology, railroads have similarly deployed more advanced technology over the years as well. Railways began the “automation” process by adding Automatic Equipment Identification (AEI) tags back as early as 1989. These sensors track the specific item tagged, but they have no way of knowing how the train is operating as a whole. Companies also began deploying RFID tags to track goods being transported along the different lines. The AEI sensors could provide information on the rail car and would interact with the various readers along the route. The additional sensors were great for location awareness, but still lacked the ability to monitor all the moving parts on the train. Still, with these two initial steps, the early stages of Internet of Things (IoT) technology began to come into focus for the railroad industry. IoT Railway Solution The rail industry needed a way to develop a more intelligent infrastructure that enabled Sensor-2-Server (S2S) data transmission via a network of Wi-Fi and voice, video, data and sensor control systems. Due to the massive amount of data collection a system like this would develop, railways are now developing a fully digital service that is directed toward centralized facilities capable of aggregating data from different sources and streams and analyzing that data in real-time. For instance, today, railroad sensors monitor everything from rail car and locomotive health, to track conditions, air temperatures, stress gauges and component conditions. Having a centralized system allows operators to take that data being collected and use it to develop predictive maintenance practices; that is, the ability to predict when a section of rail or a specific component is in need of repair or near failure. Predictive maintenance is only one component of IoT integration for the rail industry, but it is one that can potentially transform practices across the board, ultimately saving companies time and money – valuable elements for an industry centered on logistics. Across the pond, the University of Huddersfield’s Institute of Railway Research has found that tracks can be monitored with inexpensive sensors set to operate by the vibrations of oncoming trains. According to the research, the sensors will still operate if one of the sensors is damaged, because of a built-in fail-safe. These sensors are projected to detect both approaching trains and the real-time conditions of the track. Adding an IoT network to trains can help improve safety and efficiency with traffic congestion, monitoring and control speed. Even the non-critical business operations have the ability to operate efficiently on the train with the help of modern sensors. Beyond rail sensor networks, there is also the consideration of the passengers as well. If railroads can implement Wi-Fi networks on passenger cars, passengers will be able to receive travel updates, railroad companies can develop specific apps for their travelers, and riders can enjoy the utility of internet in areas that previously lacked service. Although rail remains largely an industrial consideration in the United States, the growth of IoT technology available to the greater industry bodes well for the continued development of this infrastructure around the world.
Emergency Response From Sensor-2-Server
Emergency response agencies are adding Sensor-2-Server (S2S) communication technologies to their tool belt, thus changing the way our local municipalities operate. As we head in the direction of a more connected world through the Internet of Things (IoT), we see increased efficiencies within our cities and local government operations. For example, municipalities can leverage S2S technology for monitoring and control of their traffic management systems to improve flow of traffic to support community growth or pain points within the local traffic infrastructure. These Smart City types of applications also extend into emergency response. Large scale emergency situations and natural disasters often lead to disabled or overloaded cell towers and disconnected Wi-Fi. When all forms of communication are severed, first responders face the challenge of conducting rescue efforts with extremely limited visibility into identifying which locations require immediate help and conditions of the affected locations. If local government or municipalities leverage Smart City applications to stay online during emergency and disaster recovery situations, response times increase, risk decreases and lives can be saved. A Sensor-2-Server (S2S) solution robust enough to maintain communications during worst case scenarios will provide a mission critical communication link that keeps responders connected. Further, solutions that support voice, video, data and sensor (VVDS) information can aid in complete, accurate assessment during the emergency as well as detailed follow-up after emergencies and disasters are over. Finding a New Solution for Emergency Response Secure wireless communications are a key component to successful emergency response and disaster recovery for Smart Cities. With technology specifically built for harsh outdoor, industrial locations and proven to perform under the most extreme environmental conditions, local governments and municipalities can create emergency response and disaster recovery protocols that would significantly reduce collateral damage. Wireless shorthaul communications solutions with robust Wi-Fi links support VVDS, giving responders a substantial advantage during emergency situations. In a situation where every moment counts, having that connection could make the difference in saving someone’s life. Benefits of Leveraging S2S Solutions with Emergency Response Agencies Functioning even when power outages are plaguing a city, there are a number of ways a Sensor-2-Server type of network can be leveraged by the local government: ⇒ Reduce Risks Significantly reduce the risk of injury for firefighters and first responders. By leveraging video, responders can examine and assess damage after a weather-related incident without having to enter unsafe buildings or areas. ⇒ Assess the Situation Streamline the post disaster assessment by first responders from all directions and relay critical information to headquarters. By leveraging voice and video capabilities responders get an accurate assessment of a situation from every angle and create a faster, safer evaluation than a manual process. ⇒ Increase Response Time When communication networks are down, emergency crews can leverage the secure wireless edge network. Emergency crews can respond faster because messages and instructions are relayed via VVDS rather than manually. ⇒ Protected Data Keep unwanted parties out of the network. Leverage secure encryption capabilities to prevent data hijacking and increase network security. Some solutions will offer a secure, dedicated channel for emergency communications that does not interfere with tactical plans. When a municipality becomes a Smart City, first responders can be highly effective and are better able to protect themselves from the dangerous situations they face. As S2S communications shape the future of municipal communication networks, voice and video can be incorporated into the network. With this new, rich data, emergency management teams can enhance their emergency response protocol and improve emergency planning.
Friday Top 5 IIoT News Roundup
It’s time to nominate our Friday top five Industrial IoT news articles of the week. Much like the weather in Boulder this week, we couldn’t decide on just one vertical focus, so we cast a wide net of IoT topics. In this week’s roundup, you’ll find a splash of fog computing, manufacturing, smart grid, security and overall IoT updates. Dive in and see if you agree with our picks. Don’t miss the Friday bonus at the end of this short roundup. Making fog computing sensors clearly reliableBy @Patrick_Mannion | Published on @ednmagazinehttp://www.edn.com/design/sensors/4442602/Making-fog-computing-sensors-clearly-reliable“As fog computing rolls in, the onus is upon designers to figure out how much intelligence should be at each node of the system for optimal performance. This implies then that sensors will need to start being more intelligent, with some level of built-in processing, storage, and communications capability.” Army needs wide-area electro-optical sensors for manned and unmanned aircraftBy @jkeller1959 | Published on @IntelligentAerohttp://www.intelligent-aerospace.com/articles/2016/08/ia-wami-sensors.html“Army researchers are interested in moderate-resolution persistent-surveillance electro-optical sensors that operate during the day and at night over large areas to detect vehicles and people on foot. Researchers want to develop a sensor that consists of an imaging sensor, as well as a storage and processing unit.” Five essential IIoT DefinitionsBy @MMS_MattDanford | Published on @MMSOnlinehttp://www.mmsonline.com/blog/post/5-essential-iiot-definitions-“The idea is not just to exchange and collect data, but to act on that data to make things better. (One commonly cited example is a “smart” thermostat.) IIoT is the same concept applied to industry. Examples range from “smart” buildings and power grids to “smart” transportation networks. IIoT might initially take the form of a machine tool status monitoring system.” What makes a grid smart?By David Shadle | Published on @tdworldmaghttp://tdworld.com/grid-opt-smart-grid/what-makes-grid-smart“My point, however, is that the critical consideration is not the number of sensors, controls or data storage components we add to our system when we decide to move ahead with smart grid applications. The focus also needs to be on mastering the integration of these systems, many times across traditional IT and OT lines, to allow them to achieve their potential for intelligence.” Top ten security predictions through 2020By @Gartner_inc | Published on @Forbeshttp://www.forbes.com/sites/gartnergroup/2016/08/18/top-10-security-predictions-through-2020/#4d8ba8073cbe“Through 2018, more than 50% of Internet of Things (IoT) device manufacturers will not be able to address threats from weak authentication practices.” Friday Bonus! FreeWave Technologies announces partnership with Solis Energy By @SolisEnergy and @freewavetech | Published on @SolarNovus http://www.solarnovus.com/freewave-technologies-announces-partnership-with-solis-energy_N10256.html “Both companies are excited about the partnership and are already working through high profile opportunities to take advantage of the growing demand for smart systems and industrial connectivity.”
Manufacturing the Future
It’s no secret that the industrial revolution was directly born from the development of specialized machinery, thus providing the means of manufacturing a new path in history. Industrialization marked a societal shift through the development of these new systems, which also opened new ways of doing business. The principles and practices from these transformations continue to have a long-lasting ripple effect on the world today. It may come as a surprise that America manufactures more today than we ever have before in the country’s history. The advancements in manufacturing have spurred the next era of global growth and innovation. As a local manufacturer for the past 20 years in Boulder, Colorado, FreeWave has a unique understanding of how producing goods locally actually improves the bottom line, as compared to sending the work offshore. The Manufacturer is Evolving According to a major report from the McKinsey Global Institute, manufacturing continues to evolve in many ways. Some of the key findings to note were: Manufacturing’s role is changing. The way it contributes to the economy shifts as nations mature: in today’s advanced economies, manufacturing promotes innovation, productivity, and trade more than growth and employment. In these countries, manufacturing also has begun to consume more services and to rely more heavily on them to operate. Manufacturing is not monolithic. It is a diverse sector with five distinct groups of industries, each with specific drivers of success. Manufacturing is entering a dynamic new phase. As a new global consuming class emerges in developing nations, and innovations spark additional demand, global manufacturers will have substantial new opportunities—but in a much more uncertain environment. The report also highlights two very critical priorities for the future: “Companies have to build their R&D capabilities, as well as expertise in data analytics and product design. They will need qualified, computer-savvy factory workers and agile managers for complex global supply chains. In addition to supporting ongoing efforts to improve public education—particularly the teaching of math and analytical skills—policy makers must work with industry and educational institutions to ensure that skills learned in school fit the needs of employers.” IoT and Smart Manufacturing Whether it’s called smart manufacturing, Industry 4.0 or Industrial IoT, even the casual observer of the industrial landscape can see how manufacturing is changing. Being driven by new technologies and rapidly evolving customer demands manufacturers have needed to respond with mass customization – the concept of building flexibility into mass production. Through the adoption of the Internet of Things (IoT), factory and plant settings are becoming more outfitted with advanced instrumentation and being interconnected for a holistic approach to the modern assembly line. IoT provides the ability to gain valuable data off of all the “things” along the manufacturing process. From the condition of assets and equipment to quality and yield metrics, IoT provides live, real-time data from the manufacturing environment to our fingertips. In addition, new data sets (and perhaps more importantly data analytics) are changing the way we see our machines, our processes and our business operations. Analytics can identify patterns in the data, model behaviors of equipment, and predict failures based on a variety of variables that exist in manufacturing. As more factories and equipment are instrumented with the IoT, data volume will only grow larger. In Closing America is still making plenty of “things” and thanks to the latest advancements in technology, is still the leader in many of its fields of expertise. Below is a throwback video from PBS to remind us how the manufacturing sector continues to produce not just products, but ingenuity. Video courtesy of PBS.org
App Development for the Industrial IoT
According to sources, a staggering 5.5 million new devices are connected daily to an increasingly crowded IoT space with an estimated 6.4 billion devices currently “connected.” By 2020, Gartner is predicting as much as 25 billion things will be connected. A lot of the value that both people and companies will derive from these devices heavily depends upon interoperability, which places an emphasis on app development. When we say IoT , the term”things,” generally focuses on a group of devices large or small that can be connected wirelessly by sensors to the internet, each other and or the main base station. Chunka Mui with Forbes believes that, “The Industrial Internet of Things (IoT) is a network of physical objects imbued with information and communications technologies. It brings together many of the key technologies that will make or break every information intensive company.” App development for the Industrial IoT vs. consumer IoT We are use to finding new apps for our phones, smart homes and cars, but what about industrial applications? Contrary to what you might think, Industrial IoT app development surpasses the consumer side when it comes to compensation. In fact the Industrial IoT global market is projected to reach $319 billion dollars by 2020. Unlike their consumer counterparts, Industrial IoT may not come with out-of-the-box, ready to launch applications, and may require various modifications depending on the industry. The focus for Industrial development has been in translating big data in real-time with the use of Sensor-2-Server solutions. More reasons developers should jump on the Industrial IoT app train A few of the top reasons to develop applications for Industrial IoT are as follows: A chance to change your town–by assisting municipalities in becoming smarter cities; allowing you to create your vision–along with 18.5 million professional developers around the globe designing data capture analytics that can be translated in the digital ecosystem; and finally to open up the channel of revenues with the $235 billion dollars annually spent on IoT services. Today, a developer wanting to dive into this untapped market can start by leveraging the developer community sites with Github, Predix, or Intel’s hub to name a few. Jennifer Riggins with Programmable Web reminds us that, “The most important way to prepare yourself for the Industrial Internet of Things is to stay inquisitive.” After understanding the need for these complex industrial applications, the next challenge lies in cultivating best practices to replicate success within industry 4.0. Although the market is primed for the developer picking, it will still take trial and error, as it does with any new technology to fine tune more of an industrial application engine. As more resources (and opportunities) become available to the app development community, scalability is going to be the linchpin for enterprise deployments. Think of the value created if a municipality or energy company, for example, could deploy applications to hundreds of devices that reside at the outermost layer of an IT network.
Where is RF Technology for Oil and Gas Headed?
The entire landscape of the oil and gas industry is changing. Not only has the industry downturn forced operators to rethink their business models, but the RF technology supporting industry operations is quickly changing. It is more important than ever to make intelligent business decisions with the right technology in place. As a decision maker for your organization, you need to be aware of the technology that is pointing towards the future of automation and RF technology. Challenge yourself to think beyond basic command and control and picture a fully connected network – from Sensor-2-Server. Here’s a quick snapshot of the technology movement we are seeing in the oil and gas industry right now: The installed base of wireless Machine-to-Machine (M2M) devices is growing. More technology in the field allows operators to access more data from more sensor access points – on a grander scale than ever before. The ability to leverage Big Data supports intelligent decisions that will optimize business operations and cut down on expenses. The Industrial Internet of Things (IIoT) is the future of communication technology. With IIoT, data can be transported from its collection point to wherever it needs to go – anywhere in the network. This has sparked a convergence of OT and IT operations, driving RF technology networks closer to the concept of complete connectivity. With a fully connected network, decisions are made based on comprehensive data, which drives intelligent problem-solving. With that type of insight, you could better disperse your resources, leaving a positive impact on the organization for years to come. Sensor-2-Server (S2S) solutions that deliver intelligence to the access layer are critical to industry success. S2S solutions bring intelligence to the access layer, enabling edge devices to do more than simply transmit data. They support highly detailed data analysis such as predictive analytics. Imagine the operational decisions you could make with a complete set of data from the outermost edge of your network all the way back to the server. IoT App development is the next big thing. Programmable third-party applications are on the horizon of the wireless RF solutions market. These apps will support machine learning, distributed intelligence, predictive maintenance, and more at the edge of the network. Technology is being designed to enable these applications – which have the potential to lead the industry to the next frontier of RF technology.
IoT Top News: A Sensor Driven World
Much of the world around us is becoming driven by sensors, where we are able to track and map numerous possibilities with countless M2M and IoT solutions. So, we wanted to highlight some of the trending use applications of sensors today. The Army is looking at installing sensors to their combat soldiers The Army is looking for a way to better track the health and well-being of their soldiers in combat, and current health fitness sensors have too many irregular findings. Jennings Brown with Vocativ informs us that “The United States Department of Defense is interested in monitoring the health of soldiers in real-time.” Although it is interesting to see Army uses of sensors. One must ask how sensors impact the industry at large? IoT is responsible for propelling sensors further into our world. Recent findings from ABI Research show that you can’t have one without the other — meaning, as we continue to explore the numerous IoT and M2M solutions it is only natural that we also see a dramatic increase in sensors used across the board. Peter Clarke with EET Asia reports, “ABI Research reckons sensors and peripherals will be 65 percent of an installed base of 47 billion units by 2021, double the 2016 level.” The latest IoT Sensors Market Report for 2015-2023 sheds light on the global growth of sensors. An increased demand for sensors is expected to impact the industrial and automotive IoT sectors according the the recent ReportBuyer’s IoT Sensors Market research. Electronic News has shared the latest findings from the ReportBuyer’s IoT Sensors Market 2015-2023 report which states, ” There will be a number of opportunities for the global IoT sensors market. One such opportunity is the increasing development of ‘smart cities’ around the world. IoT sensors will need to be used in aspects such as smart meters, smart grids, intelligent traffic management systems and smart packing, among others.” Sensors are being used in both industrial and consumer IoT applications across the board. As technology improves, it is now easier to create higher quality sensors for a fraction of the cost, opening the doors for more industrial and consumer IoT applications. Mary Catherine O’Connor with IoT Journal believes that with the growth of IoT sensor applications, That means there is a big opportunity for systems integrators in this market. There may also be an opportunity for companies that develop their own sensor-integration capabilities. It will be fascinating to watch the market develop.” With that said, we can’t forget to realize that implementation of any IoT sensors will require a sensor-2-server plan, that will ensure the data makes it safely in real-time to the intended end-user.
Machine Hackathon: DARPA Plays Cyber Capture the Flag
A machine hackathon is about to take on a whole new meaning as Defense Advanced Research Projects Agency (DRAPA) prepares to hold it’s first ever machine-only hackathon. With a specific focus on cybersecurity, this cyber version of Capture the Flag (CTF), is DARPA’s way of combating the onset of cyber attacks in real-time. DARPA’s normal approval process is lengthy; once a potential threat is recognized and a software solution has been created, it has to be tested and approved before it can be implemented, and by the time the software fix is ready to be used across the board, another threat looms on their horizon. Some of you might be asking, “What is DARPA and who are their finalists in this cyber challenge?” Not to worry, the short video below provides some background and context. The contest is truly a battle of the minds, as hacker teams try their hand at reverse-engineering software to seek out and find weakness in the system and fix those holes while attacking other machines at the same time. Those teams that are successful in both attacking and fixing holes capture the digital flag and win points in the ongoing process. This competition will take place in conjunction with the annual DEFCON, the longest running annual hacker competition. Before we start thinking that we’re living a modernized version of “Hackers,” there are a few more things to know. First, this is really a battle of software. The final teams were given a DARPA computer to code and must create a software platform to interact with the DARPA database. Once the competition begins, the teams will not be able to intervene if their software fails to see a weakness or is attacked by another team. The goal is to create an artificial intelligence (AI) software that is capable of responding in real-time to potential threats and weakness within its databases. Wired has added this contest to their radar, saying, “DARPA has gone full Tron. It might feel more like a video game, than a hacking contest, as DARPA has arranged for a visual diagram to be displayed on the big screen, that will show each attack and from what machine the attack came from.” Whether you believe Wired or the other tech experts, this type of machine AI is hoping to turn the tables on the war on cyber safety. Instead of waiting for an attack to strike, DARPA’s intuitive software will attempt to seek out weakness autonomously giving the Defense Department the added edge it needs to prevent leaks in the system. This is another intriguing example of how machine learning is becoming integrated into so many facets of the world at-large. Whether you make your way to Las Vegas to witness the DARPA’s version of CTF or not, that fact is we continue to add more M2M and IoT solutions to our daily lives. It’s only natural we find new ways to have machines assist us.