News Round-up: Wireless and Ethernet

As the Industrial Internet of Things (IIoT) drives the production of connected devices, wireless and Ethernet-based technologies have become an important piece of the connectivity conversation. Entire industries are making digital transformations and it’s changing the way businesses operate. There are billions of IoT devices in service and development continues to ramp up. Recently, we’ve seen several wireless and Ethernet technologies headlines in the news. Wireless and Ethernet News Is Ethernet Coming to the Network Edge? By David Greenfield | Published on @automationworld “We’ve tarBygeted a small scale, single-chip processing solution (to bring Ethernet to industrial edge devices) by reducing processor speed, memory and RAM size, reducing the interconnection complexity from processor to network interface, and reducing the pin count and complexity of the network interface,” said Weingartner. Essentially, “we’re bringing MAC into the PHY (the physical layer of the OSI model which connects a MAC to a cable), which is what Ethernet is all about. Doing this opens up possibilities not just for new implementations, but for brownfield applications as well.” Wireless Electric Cars About to Hit the Road By @robnikolewski | Published on @sdut “What’s called dynamic charging foresees a future where vehicles charge themselves as they drive. Using coils embedded in roads, EVs would refuel as they stay in transit, creating their own self-perpetuating electrical loop. It’s similar to the way some mobile devices get charged.” The Ethernet Ecosystem Today is Driven by Applications, not Speed Alone By  David Chalupsky | Published on @networks_asia “For many years, Ethernet evolution was characterized by the “need for speed” as networks and data centers sought higher and higher throughput. But over time, Ethernet has found its way into applications unforeseen by the developers of the original specification, resulting in a broad and varied Ethernet ecosystem. Today the desire to bring the advantages of Ethernet into new applications necessitates a new approach where the needs of the application are considered first and foremost in defining new Ethernet incarnations.”  Actualizing the Internet of Things Starts with Wireless By @robrueckert | Published on @TechCrunch “The most promising of wireless power technology seems to be radio frequency. With its apparent lack of serious problems and its unique strengths, radio frequency has the greatest long-term potential to become the market’s leading source of wireless power to fuel the Internet of Things. No significant evidence exists depicting radio frequency as posing a threat to humans. The human body consists mostly of water and radio waves do not transmit energy through water. Radio frequency is also highly configurable. Devices sending and receiving radio frequency power can easily be equipped with regulators, enabling control of how much power will be emitted and received.”

IIoT Apps are Brewing

General Electric recently published a piece with three important reasons software developers should focus on the industrial Internet of Things (IIoT). It cited the fact that IIoT apps can solve real-life problems in our cities, provide the opportunity for more than 18.5 million developers to advance digital infrastructure, and justify the big investments in IoT. FreeWave on App Development In our 2017 prediction series, we also highlighted the emerging opportunity for IIoT app development.  We believe that IIoT app development will start to outpace consumer app development in 2017. IoT app development can play a significant role in driving Smart Data over Big Data for mission critical use cases. Organizations need to get the data they need when they need it, and new applications at the Edge can help send the right data to the right people. We also see a huge business opportunity for developers: the opportunity to leverage cybersecurity applications and the need for business apps that will coincide with IIoT apps to meet standards and interoperability challenges. Although it is early in the year, we’ve already begun to align with our prediction through our R&D efforts here at FreeWave. Recently we partnered with an app development company to offer something new to our customers. New Apps at the Edge FreeWave’s new partnership with Systech offers an industrial Tank Level Control application that resides on and executes from FreeWave’s ZumLink Industrial IoT (IIoT) Programmable Radio for edge networks. The new application was developed by Systech for FreeWave and features an easy-to-use “ITTT (If This Then That)” process control programming interface that will control analog, digital and RS485 sensors linked to the ZumLink programmable radio.  The FreeWave ITTT App is designed for a user-friendly experience and requires no previous programming knowledge or practice. It is ideal for M2M and IIoT use cases at the access layer and will perform automated Sensor-2-Server (S2S) functions to streamline operations. We are watching IIoT app development closely and will certainly have more advancements and announcements in relation to our own journey with bringing apps to the ZumLink IIoT Programmable Radio. What kinds of IIoT apps would you like to see?

IoT News Roundup Topics of the Week: Big Headlines in Early 2017

The Internet of Things (IoT) continues to drive headlines in early 2017. It seems like every day we are seeing a flow of news stories about a more connected world. We’ve been watching some of the IoT and Industrial IoT (IIoT) headlines across the trades and have compiled some of our recent favorites. IoT News Headlines Forbes: HR can use big data to drive engagement, predict success By Valerie Bolden-Barrett| Published on @hrdive   “Forbes Human Resource Council says HR can use big data in the same manner as key performance indicators and retention metrics to carry out organizational goals. The council offers six ways HR can leverage data.” “With all the big data and technological advances at HR’s disposal, over reliance on metrics can ignore employees’ human needs. Engaging employees sometimes can be a simple as acknowledging them for a job well done or asking for their input in a major decision affecting their work.” Lady Gaga’s Halftime Show Drones Have a Bright Future By @brbarrett | Published on @WIRED “Each drone communicates wirelessly with a central computer to execute its dance routine, oblivious to what the hundreds of machines around it are doing. The system can adapt on the, er, fly, too. Just before showtime, the computer checks the battery level and GPS signal strength of each drone, and assigns roles accordingly. Should a drone falter during the show, a reserve unit takes over within seconds. All of which is pretty cool in its own right. But making it work for the biggest television event of the year takes a whole different level of planning.” How Service Relationship Management and the IIoT Are Keeping Transportation on the Right Road By Michael Riemer | Published on @IoTJournal “In 2016, the Internet of Things went mainstream, but in 2017 we expect the Industrial Internet of Things (IIoT) to transform operations across numerous industries. Also known as the Industrial Internet, the IIoT enables machine-to-machine (M2M) communication of usage, performance and health metrics. There is quite a buzz around using this data, along with machine learning and other predictive algorithms, to help anticipate and eliminate potential causes of downtime. Nowhere is this more evident than in the commercial asset service ecosystem. Trucking fleets, construction assets, agriculture and power-generation equipment are all susceptible to costly unscheduled downtime and generally long repair cycles.” China is Now the World’s Largest Solar Power Producer By @luchanglu| Published on @DigitalTrends   “As it stands, solar energy represents only one percent of the country’s energy output. But this may soon change as China devotes more and more of its attention towards clean energy. The NEA says that China will seek to add more than 110 gigawatts within the next three years, which could help the nation up the proportion of its renewable energy use to 20 percent by 2030. Today, it stands at 11 percent.”   We predicted that 2017 would be a transformative year with a lot of innovation and smarter data, especially within the IIoT realm. These recent headlines are certainly tracking along with those insights. It will be interesting to see how IIoT continues to shape markets and change the way we do things.

2017 IIoT Prediction Series, Part 4: Smart Cities Turn to Standardization

As 2017 kicks into full gear and a particularly interesting 2016 fades into the rearview mirror, we took a look around the IIoT landscape to see what this year might potentially have in store. We will be unveiling five IIoT-related predictions throughout this week and into next, so stay tuned and let us know what you think! On Tuesday, we started our predictions by looking at the potential development of Fog Computing at the Edge and its impact on cybersecurity. Wednesday, we predicted that the rise of IIoT applications will outpace consumer IoT apps. Yesterday, we wrote about the challenge facing IIoT businesses as the workforce ages and new skills are needed for the ongoing IT/OT Convergence factor.  FreeWave Predictions 2017 Throughout the last year or so, we’ve paid especially close attention to the development of Smart infrastructure. People tend to think of smart cars, smart appliances, smart houses, and smart cities in this context, but what we’re more interested in is the growth of the infrastructural mechanisms that make these “smart” applications a reality. Because we play in the industrial sector, the growth of Smart Cities is where we most notice the growth of this infrastructure. Some cities around the world, especially India, have invested heavily in the infrastructure necessary to create a Smart City. Other countries, however, have been slower to follow suit for a variety of reasons. Our Smart City Prediction With the rise of Smart City initiatives the 802.11 ah (HaLow) wireless networking protocol will over power Bluetooth in 2017 for critical infrastructure applications like traffic management, public safety, energy efficiency and public infrastructure design. By the end of 2017, millions of smart IoT devices will be deployed into networks that use the HaLow protocol and it will eventually become the standard for IIoT. The “Standards” Problem One of the main challenges to Smart City growth so far has been the reluctance for industry leaders to choose a single standard for connectivity. So far, HaLow has been considered one of the titans, but there is yet to be a move to make it the standard for further development. This WiFi protocol brings many benefits to the table, including its high speed data transmission and the early backing of IEEE. Bluetooth or HaLow? Nipping on the heels of HaLow is the emergence of Bluetooth 5. Where HaLow shines – high-speed data transmission rates for longer distances – Bluetooth 5 falls flat. But Bluetooth 5 has perks of its own: low energy needs means longer battery life for the devices that use Bluetooth 5, and, of course, the cost factor cannot be ignored either – Bluetooth 5 is much cheaper to implement. Additionally, where Bluetooth 5 is already up and running, HaLow is still being rolled out, and will continue to be for the foreseeable future. Smart Cities Need Bandwidth, but… They also need cost-effective solutions that can be rolled out today. Where the benefits outweigh the cost is most likely the side to which Smart City developers will fall. As urban areas continue to expand outward, the need for high bandwidth solutions will become more important, which would seem to favor 802.11ah in the long run. Stay tuned Monday for our final prediction!

Top News: Unmanned Aircrafts Taking Flight

As we near the end of 2016, it’s hard to ignore the current and potential impact that Unmanned Aerial Systems (UAS) technology has on society. News reports from around the world continue to highlight many instances of unmanned aircrafts taking to the skies. As the Federal Aviation Administration (FAA) and other international airspace regulatory bodies continue opening up the airways for new technology deployments, businesses look to be in a prime position to leverage numerous unmanned flights around the globe. Despite the continued pressures on government agencies to make UAS deployable in commercial airspace, regulators and safety officials still tend to err on the side on caution. Numerous testing sites and operations have already begun in hopes of helping to define and implement the safety protocols UAS operators need to follow. However, will regulators allow UAS to fly “out of sight” missions one day? Will retailers finally get approval for the chance to deliver packages via drones? How will airport officials help coalesce flight patterns from both manned and unmanned systems? Only time will tell, but as the excitement around UAS grows, we’ll keep a keen eye on the developments and use cases. Take a moment to enjoy this week’s highlights of the top UAS coverage throughout the past week. FAA to Conduct Unique Drone Testing at DIA By @CBS4Jeff | Published on @CBSDenver “Unique drone testing is going on at Denver International Airport. The only other testing like it has been done at JFK Airport in New York and at Atlantic City Airport. Now testing is looking at how to identify and control drones near airliners in Denver.”   NASA Proves Out of Sight UAS Operations By @NASAAmes | Published on @UASMagazine “During the test, two of the drones flew beyond their commanders’ lines of sight. As many as two drones were operated in the same test airspace, separated by altitude and within sight of their operators. The pilots used the NASA-developed UTM research platform to gain information about all the drones’ locations and proximity to other air traffic and hazards. UTM also informed other airspace users of potential hazards and conflicting operations that could affect their plans.”   Flight at the Bay Shows UAS Role in Emergencies By GPS World Staff | Published on @GPSWorld “The test also helped Shore Regional Health explore new ways of providing access to medical care to rural areas, according to William Huffner, Shore’s chief medical officer. UAS technology has the potential to bring supplies not only to medical staff, but also directly to patients in isolated areas.”   The future is here: UAS are delivering Domino’s pizzas to customers By @mcwm  | Published @qz “To order a pizza with a drone, a customer has to opt into the service, and can then order online or through the Domino’s app to get the pie they desire. Right now, Domino’s told Quartz, the drones have a delivery radius of 1.5 km (about one mile) from the Whangaparaoa store, but the company is aiming to expand that to about 10 km (roughly six miles).”   Disney Plans to Fly Over 300 UAS Every Night This Winter at Disney World by @aprilaser | Published on @Recode “In August, after the Federal Aviation Administration released the drone rules for commercial operators, Intel was granted a waiver to fly an unlimited number of its Shooting Star drones per pilot at night over any uncontrolled airspace in the country.”   As we conclude this week’s unmanned aircraft edition, we hope to have inspired, informed and most of all entertained with all the possibilities of UAS taking flight. Reliable IoT connectivity and data communications are key to opening doors to what some deemed impossible to happen. It’s time to embrace these new technologies and discover what the future will unleash for the next-gen airspace.

Creating A Safer Environment with IoT

We can get a better understanding of the world around us by consistently monitoring our environment. The Internet of Things (IoT) has enabled large-scale environmental monitoring for commercial, industrial and research purposes. New innovations are constantly in progress that will allow us to make better, safer decisions in our everyday life and protect our environment. For example, imagine how much safer roads would be if your car could warn you about upcoming road hazards such as heavy snow or black ice based on weather and road condition data. When connected to an IoT network, modern technologies can also be used to collect data for weather predictions and monitoring. Oil and gas companies can better protect marine life and ocean environments with offshore leak detection systems. On land, residents living near coal power plant facilities can feel better about the air they breathe when air-quality is consistently monitored. Sensor-2-Server (S2S) communication and networking solutions are increasingly used to help monitor the quality of the environment to prevent and actively identify a number or potentially dangerous situations, such as hazardous material leaks and fugitive emissions. From environmental impact assessments and air quality monitoring to soil dynamics analysis, S2S solutions are meant to gather data from any sensor at any point in the IoT network and bring it back to a specific location to be acted upon. With S2S technology in place, operators can consistently gather and transmit data that affects the quality of life for the world population. It’s important to find a solution that has been proven in the harshest environments – that can withstand the weather extremes and volatile elements. Understanding Your Environment in Real-Time In many applications, especially when safety is the top priority, it is critical to review timely and accurate data to ensure there are no glaring issues with the environment. S2S technologies for environmental monitoring should offer real-time information, as well as large quantities of data that can be analyzed to understand trends through predictive analytics engines. Here are some additional applications where S2S solutions can be leveraged for environmental monitoring: CBRN Monitoring for protective measures where chemical, biological, radiological or nuclear warfare hazards may be present Fugitive Emissions Monitoring for volatile organic compounds (VOC) – this is especially common in oil and gas Leak Detection and Repair (LDAR) to ensure compliance with Environmental Protection Agency regulations. Subsea Monitoring for exploration, research and offshore oil and gas applications Levee Performance Testing to understand levee load capacity and prevent breaches. Water Level Monitoring to track rainfall or water levels in industrial settings. River Flow Monitoring to determine how much water flows through lakes and streams. Seismic Monitoring and volcanic monitoring to provide early detection of these events and enable authorities to warn citizens in advance to take appropriate precautionary measures. As we become increasingly connected to the world around us, we also gain visibility into the surrounding environmental conditions. This offers a wide and diverse range of industries a unique opportunity to monitor the environment in new ways and make intelligent decisions to prevent future negative impacts on the environment as a whole.

IIoT Top News: The Future of Wireless

Where wires once ruled the day, wireless data solutions are now entrenched into the very fabric of the business. It will be interesting to see what the future of wireless technology will be able to tackle. This past week, ITU Radio Communication Assembly met to figure out that very thing. The ITU only meets every three to four years, so it is important that they covered the current and expected wireless resolutions. Topping the list was a push for 5G systems expected to become a reality by 2020. 5G will offer extremely high definition video services, real-time low-latency applications and overall expansion of IoT. Yet another key point solved by the ITU meeting is that “RA-15 recognized that the globally connected world of IoT builds on the connectivity and functionality made possible by radio communication networks and that the growing number of IoT applications may require enhanced transmission speed, device connectivity, and energy efficiency to accommodate the significant amounts of data among a plethora of devices.” As the bright future of wireless grows across the globe, it will continue to evolve and transform the way we use wireless in our daily lives. ISA reported this week that automation is essential for the next-generation of industrial wireless. Businesses need to be switching to high-speed broadband wireless in order to capitalize on the technological applications available to move those industries forward. This surge to operate wirelessly has created a crowded technological highway, with everyone wanting their message to be heard. DARPA has recognized this noise and developed a RadioMap to detect radio frequency (RF) spectrum congestion. RadioMap is able to transmit this information through the radios already deployed for various reasons. This unique program helps create plans of action by identifying times when the frequency usage is jammed or clear, thus informing them of the best times to communicate. Now that the wireless traffic has been sorted, let’s consider the possibility of wireless power solutions. According to Oil Price, wireless power is already in use in some commercial spaces, and will continue to gain more support as technology improves. Michael McDonald with Oil Price boldly predicts wireless power could be used to support the massive energy needs of the defense and healthcare industries by 2016. Unfortunately, not everyone agrees that wireless technology has been a seamless transition. ECN recently asked a handful of industry experts about the challenges they face as they integrate wireless IoT into their business. For example, Vera Jorkitulppo, a senior product manager of GE’s embedded power product line at Critical Power Business, believes, “At the other end of the radio link, there will be a multitude of diverse IoT devices developed by innovative companies with new solutions to real-world consumer or industrial problems.” Now, the next-generation of wireless technology may have its challenges, but, overall, the future looks bright, so put on some shades and enjoy this evolution. Hope you enjoy this week’s reading. As always, tell us what we missed! The Future of Wireless Communication (MyBroadband) Last week, the ITU Radio Communication Assembly met to set the future direction of wireless communication.  At this year’s assembly, Hans Groenendaal from mybroadband reported back that they had “reached significant decisions that will influence the future development of radio communications worldwide in an increasingly wireless environment.”   Industrial Wireless Evolution (ISA) Establishing the next generation of industrial wireless classification, system requirements, I/O and network capabilities for the industry.  Soliman Al-Walaie writes, “Wireless technology is an essential business enabler for the automation world.”   What Wireless Networking Challenges Do You Foresee with the Onset of IoT? (ECN Mag) Jamie Wisniewski asked an assortment of experts what they see as possible wireless network problems with the integration of IoT. Greg Fyke, a marketing director of IoT wireless products at Silicon Labs, suggests that “There are three key wireless networking challenges for successful Industrial Internet of Things (IIoT) implementation, including reliable communication, security and control.”   Darpa’s RadioMap Detects RF Spectrum Congestion (GCN) An interconnected connected wireless world has created congested airways, thus making the management of military communication and intelligence gathering radio frequencies of critical importance. “RadioMap adds value to existing radios, jammers and other RF electronic equipment used by our military forces in the field,” said John Chapin, DARPA program manager.   Will 2016 Be the Year of Wireless Energy? (Oil Price) Oil Price looks at the possibility of wireless energy being able to support defense, healthcare and other massive energy needs in the near future, maybe even by 2016. Michael McDonald’s research shows that, “Wireless power has been a dream of mankind’s for decades, but the technology finally appears to be gaining some traction.”  

Guest Post: Keep the Data Flowing in Oil and Gas

By Joyce Deuley, Sr. Analyst and Director of Content at James Brehm & Associates LLC State of the Industry This year has proved challenging for oil and gas companies: falling prices, crackdowns from environmental regulations, growing concern about the destabilization of land due to fracking, as well as an increasing gap between jobs and skilled engineers to name a few issues. Royal Dutch Shell, for instance, recently terminated its plans to drill off the Arctic coast of Alaska for the “foreseeable future”—this is after $7 billion dollars and more than five years spent on exploratory drilling (with disappointing results) and the purchase of costly leases and permits for the privilege to do so (Daily Mail). The Arctic Circle has been viewed by many as a “holy grail” in terms of rich oil and gas reserves—the largely untapped Great White North, if you will. Initiatives in the Baltic have also come under discussion lately, as Russia negotiates the political quagmire it has found itself in concerning territorial disputes. Still, it isn’t all doom and gloom. Our reliance on oil and gas for manufacturing, shipping, transportation, energy, and more hasn’t dissipated—rather, it will continue to increase with the rising population and result in rapidly expanding urbanization. More food will need to be shipped globally, more cars will be driven, more homes will be heated, more materials will need to be made, etc., providing rich opportunities for oil and gas companies to invest in scalable solutions, as well as to firmly root themselves as valued players in the market. Investors, and other interested parties, are paying close attention to the oil and gas markets to better determine how best to mitigate depleted reserves and improve overall productivity and efficiency: keeping their bottom lines low and profit margins high. To pull back from an environmental and global perspective on the state of the industry, let’s instead bring it into a sharp focus with its current business challenges. Problems with efficiency include legacy pipeline and refinery infrastructure that hasn’t been updated or modernized in decades, a shortage of skilled labor as qualified engineers approach retirement, the need for increased monitoring and control across remote areas, and the mission-critical need for the aggregation, interpretation and management of unprecedented amounts of data. But, effectively managing that data can present major challenges for oil and gas providers: with so many devices at the edge, they are practically drowning in the seemingly endless flood of information that is collected. The need to find reliable data management platforms that help remove complexities associated with data visualization is critical for these companies’ ability to identify and enact valuable business decisions. What to Do About It It is no secret that the Internet of Things (IoT) has proven to be disruptive across a myriad of markets. While the technologies and principles of the IoT have been around for decades, predominantly within the manufacturing and processing industries, its relatively nascent presence within the consumer electronics and wearables markets has helped rebrand the IoT with a level of “sexiness” it previously lacked. But at the heart of the IoT is a near-obsessive desire to decrease operational and deployment costs, meet compliance regulations and to dramatically increase productivity and efficiencies. The oil and gas industry happens to be one of the largest growing areas for IoT deployments and has found many ways to benefit from connected solutions, such as pipeline and wellhead monitoring. Oil and gas pipelines can span across hundreds of miles of rugged terrain. The ability to monitor such a territory can be challenging, as harsh winters and debilitating droughts, forest fires and or heavy rains can put stress on the integrity of a pipeline, plus the remote nature of its location can prevent technicians from being able to regularly service it. Another challenge is knowing when and specifically where a problem occurs. For instance, if there is a malfunction that results in a leak along one of the more remote sections of a pipeline and there is no sensor to alert someone, we could be looking at a nightmare of a situation: environmental damages, not to mention untold amounts of costly clean up, repairs and definitive losses to the oil and gas company at large. By utilizing connected sensors along the lengths of their pipelines, oil and gas companies can overcome these challenges and monitor flow, pressure, integrity of the pipeline and more. Empowered by the IoT, oil and gas providers can receive near real-time information about their entire operation, enabling decision makers to better manage their technicians, as well as improve overall production and reduce maintenance and operational costs. As oil and gas companies wait for the stock market to pivot from $50 a barrel, they need to look seriously at implementing business solutions that are going to help them weather this lull. The IoT provides many opportunities for oil and gas providers to tighten their belts by increasing efficiencies and production, ultimately reflecting in a more cushioned bottom line. Pipeline monitoring and control applications can help reduce non-productive times by up to 30%, which is just one small example of how dynamic transformations could be made by the IoT. About Joyce Deuley As Sr. Analyst and Director of Content, Joyce researches and interprets market trends, locates opportunities for growth, and researches the current happenings in the M2M and IoT space, providing our clients with up-to-date and actionable information. Joyce specializes in technical communication, translating complex data into layperson-accessible presentations, articles, and white papers. Additionally, Joyce manages, contributes, edits, and designs our newsletter, The Connected Conversation. She currently offices out of, and is a founding member of Geekdom, a tech accelerator-like co-working space in San Antonio, TX. Previously, Joyce worked as a Secondary Researcher at Compass Intelligence, learning the M2M markets alongside James Brehm. While at Compass Intelligence, she gained experience in market research, competitive analysis, content strategy, as well as qualitative research. Joyce graduated with a B.A. in English, focusing on Professional and Technical Communication, from the University of the Incarnate Word (UIW) in San Antonio. She

Ships that Sail Themselves

Is it time for ships to sail off on a journey by themselves? As the Internet of Things (IoT) connects the world, while the robotics industry continues to innovate, man and machine are merging together like never before. Unmanned aerial vehicles (UAVs) have impacted a number of industries from agriculture to security. If recent news is correct, it won’t be long before autonomous cars are traveling roads alongside us. Now, organizations and government agencies around the world are actively working to bring autonomous vessels to our oceans. What can we expect from unmanned ships operating in our largest bodies of water? IoT and robotics are being considered for a variety of commercial and military purposes at sea. For most of the world, it seems autonomous ships are in the testing phase, but there are big plans in the works around the globe: The British engine maker Rolls Royce Holdings, PLC is leading the Advanced Autonomous Waterborne Applications initiative with several other organizations and universities. The company is eyeing a timeline of remotely controlled ships setting sail by 2030 with completely autonomous ships in service by 2035. The timeline will be heavily dependent upon automation technologies’ ability to carry large amount of data from ship to shore to ensure safe operations. Recently, the UK’s Automated Ships Ltd and Norway’s Kongsberg Maritime, unveiled plans for a light-duty ship for surveying, delivering cargo to offshore installations and launching and recovering smaller remote-controlled and autonomous vehicles. “This ship is considered the world’s first unmanned ship for offshore operations and is being eyed for many uses including offshore energy, fish farming and scientific industries.” In the U.S., the Navy has begun to consider autonomous ships for a number of applications, but is cautiously approaching these new technology advancements. According to National Defense Magazine, “The Navy for now appears to be in no hurry to pour big money into drone ships and submarines. And there is little tolerance these days for risky gambles on technologies.” However, the article acknowledges that robots at sea could help do the jobs that are dangerous or costly for human operators, such as hunting enemy submarines, detonating sea mines, medical evacuations and ship repairs. The European Union (EU) appears to have a vested interest in sea robotics. As infrastructure costs rise for improving rails and roads, they have begun to seek alternative ways to move large quantities of cargo. According to Maritime Executive they have, “had a long-term goal of making short sea shipping more competitive with road and rail transport, which is under stress from the transportation bottlenecks caused by increasing volumes of internal trade.” As the EU faces massive infrastructure costs to upgrade road and rail, there is increased attention and effort directed at the “motorways of the sea.” The Defense Advanced Research Projects Agency (DARPA) has been testing a robotic ship called the “Continuous Trail Unmanned Vessel,” and has been running sea trials on its radar system. The radar is fastened to a parasail that enables heights of 500-1,500 feet. These are just a few of the autonomous vessel projects in the works. In order for unmanned vessels to operate, it is clear the ability to transport data in massive amounts will play a critical role in the success and safety of those sharing the sea with autonomous ships. As technologies evolve to meet these big data needs, we can eventually expect to see more unmanned vessels in the sea, improving offshore applications, making human jobs safer, and creating new efficiencies for organizations looking to optimize international trade.

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.