IoT Top News: M2M Propels Machines

Time and again, those keeping a pulse on the Internet of Things (IoT) space frequently hear about the “rise of the machines.” Humanity is not only discovering fascinating ways to integrate machines into our daily lives, but also finding new uses for machines as well. How? Machines are now “internet-connected” just like the smartphones we carry around in our pockets. And this isn’t just on the commercial side with the likes of smart thermostats or connected vehicles – even tractors and oil and gas machinery are industrial examples of where new “things” are now on the digital network. In fact, there are more M2M or “machine-to-machine” communication devices on this planet than humans. As GSMA Intelligence reported in 2014, there are 7.2bn M2M devices versus 7.19bn humans. Stuart Taylor from Cisco also wrote a prediction that “The Internet of Things (IoT) is a world where up to 50 billion things (or devices) will be connected to the Internet by 2020; or, the equivalent of 6 devices for every person on the planet.” Realizing the major role M2M devices continue to have in our connected world, specifically as it relates to the advent of machine learning, it’s only natural to highlight the impact of machines and M2M in the past, present and future. The Machines are Coming: How M2M Spawned the Internet of Things In the digital world, M2M wireless solutions will work for us quietly, in the background solving all our day-to-day needs. John Kennedy with Silicon Republic reports that, “M2M is at the heart of the industrial internet of things (IIoT), powering smart factories that can be run remotely from a tablet computer, and smart buildings that monitor their environment and feed data back to the cloud.”   Is Machine Learning Over Hyped? In the now 24-hour news cycle, often the top news lingers around lighter topics. So how much hype should be given to machine learning (ML)? The Huffington Post respondent Scott Aaronson, theoretical computer scientist at MIT, seems to think that “There’s no doubt in my mind that people 30 years from now will agree with us about the central importance of ML, but which aspects of ML will they rage at us for ignoring, or laugh at us for obsessing about when we shouldn’t have?   Machine Learning: Demystifying Linear Regression and Feature Selection Machine learning needs to integrate domain knowledge in order to improve the quality of data collected from analysts. Josh Lewis with Computerworld thinks that, “Business people need to demand more from machine learning so they can connect data scientists’ work to relevant action.”   Machine Learning Examples Crop up for Data Center Management Data centers appear to be the perfect place for enterprises to implement machine learning to its fullest. Christopher Yetman, COO at Vantage Data said, “There are also sensors that generate data about air pressure, humidity, temperature and supply voltage and typically feed into a programmable logic controller.”   M2M Technology Driving Agriculture’s Industrialization  On a global front, M2M is driving agriculture’s industrialization in South Africa. IT News Africa informs us that, “Given the ability to automate many monitoring and control functions through intelligent devices, agriculture is a prime target for leveraging M2M capabilities.”   We hope you have enjoyed this week’s roundup, and as M2M connections continue to pile-up, we urge you to consider the plethora of commercial and industrial use cases that can benefit from these innovations.

IoT Top News: Future is Now

The Internet of Things (IoT) is creeping into every aspect of our lives. With the advent of smart cities, smart manufacturing, precision agriculture, drones and digital energy, businesses and individuals alike have seen the influx of IoT technology. For example, a recent report from Gartner, “suggests that more than 26 billion devices will be connected to the internet by 2020, with 250,000 of them being vehicles.” So, with the billions of connected things, its only natural this week’s top news roundup would highlight how IoT is maturing and what experts see for the future ahead. Research Firm calls for Standardized IoT Deployments As the demand increases to make more smart cities, researchers warn of extra costsand fragmented delays if we don’t create overall IoT standards. Machina Research reports, “Using current non-standardized  technologies, it would cost 1.12 trillion dollars to get smart cities up and running by 2025. Were a standardized approach adopted, the total cost would be 781 billion dollars, a savings of 341 billion dollars worldwide.”   Is Automation the Key to Unlocking IoT Data? The best approach to implementation is a combination of data analytics with real-time automated wireless results Dave McCarthy senior director of products at Bsquare suggests that, “The goal of any IoT system should be to extract business value from device and sensor data.”   Three Ways to Leverage IIoT Some of best ways to leverage Industrial IoT is by learning to adapt machine learning(M2M), embedded sensors and an overall operational shift allowing the wireless technology to be implemented across the business. Scott Stone with Plant Engineering informs us that, “Accenture predicts that vendor-specific and proprietary infrastructure will be replaced over time with interoperable platforms. Harnessing the data through sensor-driven computing, industrial analytics and intelligent machine applications opens the door for innovation.”   Internet of Things Offers Vision of the Future IoT is not a new concept, it has actually been around for 30 to 40 years, yet the future of IoT will still be fueled by security and integration concerns as our need to be connected everywhere continues to grow. Basher Saajid with Liberty Voice reminds us that, “Forbes has reported the overall IoT potential to generate additional $10-$15 trillion for the world GDP by 2034.”   We hope you enjoyed this quick look at IoT top news, as always tell us about the stories you found of interest!

First Responders: Saving Lives, Time and Money Through Innovation

How the Internet of Things is Changing the Landscape for First Responders and Industry According to the National Fire Protection Association, in 2013 there were 369,500 home fires causing some $6.8 billion in damages1 — plus an additional 98,000 apartment structure fires contributing an additional $1.6 billion in losses2. A frightening picture, isn’t it? The numbers are staggering — and yet innovation for emergency responders at both a local and national has not been a priority. The Internet of Things (IoT) aims to change that. Companies are now exploring how IoT technology can disrupt the way emergency responders do their jobs, saving countless lives and millions of dollars in the process. The IoT also holds immense promise for industrial applications, which often take place in remote locations where connectivity and communication platforms are rarely available. The IoT is a vast world, enabling the physical world to communicate with the digital world in new and amazing ways. But thanks to innovations fueled by companies focused on industrial, military, and government applications, we can traverse beyond a network of connected thermostats and smart TVs into an environment where first responders, industrial crews, and our military can communicate and receive critical information in real time.     An example of technology that is changing the world of emergency responders as well as industries like Oil and Gas, the Military, and Utilities are ruggedized, industrial shorthaul and Wi-Fi platforms that offer secure collection, control and transport of Voice, Video, Data and Sensor information at incredible speeds. So what does this mean for the industries mentioned above? Imagine first responders being enabled to pull up building plans and architectural details as they arrive on scene. Structural notes are delivered at incredible speeds, giving the emergency responders valuable insight into stairway and fire escape placements and potential danger zones. Communication between police, fire crews and ambulance drivers is streamlined — delivered at blazing fast speeds. In other situations, police can access vehicle databases or hospital services, preserving precious minutes than can mean the difference between life and death. For industrial applications, the IoT holds promise for new levels of connectivity — enabling crews to access and consume information at a moment’s notice. This means workers can collect and transmit important data quickly and securely — even in harsh conditions. Beyond connectivity, the Internet of Things also holds massive promise for the monitoring of emergency responders and industrial crews in the field. Critical sensor data — such as oxygen levels, body and ambient temperature, heart rate and more — can be viewed in real time, giving the ability to monitor the vitals of emergency responders and workers in an instant and watch for danger signs and track bio data in the field. This data can be logged and analyzed, fueling innovation that will help keep these employees safe. The IoT is a vast and ever-growing field — and it holds incredible promise for making our cities a better and safer place to live and work. For emergency responders, where seconds saved can be lives saved, and industries where time is money, the IoT holds remarkable promise for changing the way we communicate, gather data, and work in the field.   ————- Sources: 1 – http://www.nfpa.org/research/reports-and-statistics/fires-by-property-type/residential/home-fires 2 – http://www.nfpa.org/research/reports-and-statistics/fires-by-property-type/residential/apartment-structure-fires

Difference Between Data Sheet Transmit Power & Data Stream Transmit Power

Image courtesy of Flickr Creative Commons You need to link a two production sites together in your IIoT network in order to move critical voice, video, data and sensor data (VVDS™) between the sites by deploying access points. So, you consider using industrial Wi-Fi Access Points to implement this short-haul, point-to-point (PTP) RF link between the two sites. Short-haul RF links out to 8 miles are very doable using industrial Wi-Fi Access Points with directional antennas. You evaluate potential Wi-Fi Access Points from their data sheet specs. This is given, and you select one. Now, there is one specification that is commonly misunderstood and leads to confusion when evaluating MIMO capable Wi-Fi Access Points and using them in either PTP or point-to-multipoint (PMP) IIoT networks as wireless infrastructure. Confusion and mistakes arise from the difference between the transmit power stated on the product data sheet and the transmit power of a single MIMO data stream of the Access Point. For example, a 3×3 MIMO Access Point data sheet states the transmit power is 27dBm for MCS4/12/20 data encoding in either the 2.4 or 5GHz band. This is typical, and not a surprise, but what is this transmit power really stating. The FCC limits and regulates maximum transmit power from an intentional emitter, e.g. Wi-Fi Access Points. For Wi-Fi devices, the limits apply to the aggregate transmit power of the device. In above product spec example, the transmit power stated is the aggregate transmit power for the 3 MIMO data streams. Still good? Yes. You have a Wi-Fi Access Point and the total transmit power is 27dBm. Now, you design your short-haul PTP link using Wi-Fi Access Points and directional antennas. What transmit power do you use in your RF link budget? 27dBm since it is the transmit power for the Access Point for the data encoding and the band you plan to use. Right? No. While 27dBm is the total aggregate transmit power for the Access Point, it is not the transmit power of an individual data stream. The individual data stream transmit power is roughly 5dB less than the aggregate transmit power found in the data sheet for a 3×3 MIMO product. Difference in Transmit Power versus Aggregate Power 1 Data Stream transmitting at 22dBm    —  Aggregate Transmit Power is 22dBm 2 Data Streams transmitting at 22dBm  —  Aggregate Transmit Power is 25dBm 3 Data Streams transmitting at 22dBm  —  Aggregate Transmit Power is 27dBm So here it is… If you use the transmit power from the data sheet in your RF link calculation without correction, your actual link distance will be approximately half what you expect for the planned fade margin or the link reliability will be less than what you expect for the planned link distance. When designing RF links for the IIoT networks, make certain you are using the correct transmit power in your RF link budget calculations.

Top News: IoT Rules at Mobile World Congress (MWC)

After a week of everything mobile, at least in Barcelona at the Mobile World Congress (MWC), it is only fitting this week’s top news recap focuses on the other three letter acronym so hotly discussed from the show – IoT. Whether you have been living under a rock or just hadn’t embraced the fascination with the latest handheld smart technologies and cellular networking, this week’s Mobile World Congress (MWC) presented by GSMA, brought together around 800 mobile operators from more than 250 companies from around the globe to discuss the latest products, software and innovations that will push the IoT space even further into maturity. Some of the key themes to come out of this year’s MWC were the fifth generation wireless systems or 5G, the impact this next-gen tech and mobile will have on the Internet of Things (IoT) and the booming IoT businesses laying the foundations of the connected world. Now as you nestle up to your favorite mobile device or smart tablet, relax and dive into this week’s IoT news roundup from MWC!   MWC: 5G Key to unlocking IoT … Just Not Yet (IndustryWeek) As the MWC surged forward with excitement for 5G to finally unlock IoT, experts warn the connective battle isn’t over, as the world dives into incorporating 5G throughout. Agence France-Presse with Industry Week reports that, “5G is the term on everyone’s lips at the Mobile World Congress in Barcelona and a global race to develop it is under way.”   IoT Race Heats up at MWC 2016 (RCR Wireless) The race heats up for IoT, as 2G networks scramble to find a new way to connect with the announcement of 5G at MWC 2016. “Mobile World Congress is all about the newest wireless technologies, but this year the end of an old technology is driving conversations around the Internet of Things.”   This Week’s 5G Buzz Indicates IoT is Finally Kick-Starting (VentureBeat) The hot topic on everyone’s mind this week had to be 5G and the need for more IoT connectivity. Leon Hounshell, with Greenwave Systems reminds us that, “Regardless of the hype, CES and MWC do not reveal an IoT revolution, but they certainly show us a determined evolution, where devices will unceasingly become more connected, open, and smart.”   Mobile World Congress: Internet of Things Business is Humming (USA TODAY) This week may have shown us a lot of shiny new IoT products for consumers, but the truth is IoT for business will really dominate deal-making. USA TODAY believes that, “It’s not hard to see why. Gartner forecasts that the market for IoT services will top $101 billion this year, nearly 30% more than the $78 billion that businesses spent last year. By 2020, spending for services like network deployment, operations management and data analytics is forecasted to balloon to $257 billion.” Mobile World Congress: Why Every Brand Should Become a Tech Brand (Campaign Live) Connectivity is everything, and moving forward in this technological age the MWC believes all companies should become a tech brand in order to incorporate IoT. Natalie Bell with Campaign Live states that, “We are now in an era of connecting everyone and everything. So, while Mark Zuckerberg is urging us to focus on the former and ensure wider basic connectivity across the entire globe, there’s a huge tech focus on the latter — the Internet of Things, which will be greater enabled by the increasing capacity in 5G. It’s this vast array of connected objects that have caught my attention this year.”

Utilities: Where Data Flows Like Water at the Speed of Light

(Image courtesy Flickr Creative Commons) More than a decade ago, the choices were few to address the needs of data gathering and recording. Water and wastewater utilities, for example, had to be able to use a ‘one size fits all’ unit with set parameters and make their systems adaptable to the technology of the day. Since then, many municipal water systems, such as those in Southern Utah, have had to broaden the area from which they gather, use, and reclaim water. Most growing areas are even facing the dilemma of higher demands on services while trying to stay within shrinking budgets and manpower cutbacks. This is because in the past, many viewed electronic data gathering as a ‘want’ instead of a ‘need’ until now. As with any limited resource, scarcity often drives innovation as people are tasked to do more with less. Such is the current state and convergence of water/wastewater utilities and the Internet of Things (IoT) – an emerging paradigm in which more data and information can be gathered and acted upon during the processes of collecting, treating, monitoring, and distributing water. With the unprecedented demand for cities and municipalities to maximize water resource allocation, local government officials began implementing smarter methods to address the challenges of today and hurdle the potential obstacles in the future. By using new technology in the form of sensors, IoT networking and data analytics, city officials, local citizens, and businesses are now more accurately predicting everything from crop yields to at-home water conservation. This technological evolution is part of a much larger undertaking that has both garnered international attention and prompted action all the way to the Federal level of the United States government. Smart Cities Initiative Connected In response to the new Smart Cities Initiatives, cities around the country are beginning to take advantage of the $160+ million in Federal research and technical collaborations to help their local communities tackle key challenges such as lessening traffic congestion, reducing crime, fostering economic growth, creating jobs, managing the effects of a changing climate, and improving the delivery of city services and quality of life. According to a White House fact sheet on Smart Cities, emerging technologies have “created the potential for an ‘Internet of Things,’ a ubiquitous network of connected devices, smart sensors, and big data analytics. The United States has the opportunity to be a global leader in this field, and cities represent strong potential test beds for development and deployment of IoT applications.” Given the growth of these highly connected networks, Smart Cities are using wireless communication technologies to build critical infrastructure and support public services. According to the research firm Gartner, an estimated 1.1 billion connected things were used by Smart Cities in 2015, with this total rising to 9.7 billion by 2020. What Is on the Horizon for Utilities? As Smart Cities initiatives continue grabbing headlines and captivating imaginations, public utilities and their customers have the most to gain in the short term. Coordination and collaboration amongst a cities’ local government, utility operators, researchers, and technology vendors is key to bringing these “smart initiatives” to light. For example, Orlando, Florida was a destination of choice for many involved in these smart city transformations, as DistribuTECH 2016 brought approximately 12,000 people together from more than 60 countries across the globe to keep the focus on the future of electric power delivery and a smart utilities infrastructure.

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.