Microgrids Promise Smart Industry Possibilities

The rise of microgrids, while not inevitable, is a natural next step in the progression of smart grid technology. As automation, data collection and transport, and monitoring capabilities have grown into standard smart grid technologies, companies, military bases, small towns and even cities are tapping into the possibilities for self-sustaining microgrids. What are Microgrids? Microgrids are, essentially, self-contained local energy grids. In most instances, they are attached to the greater grid (macrogrid), but can disconnect if necessary for autonomous operation. In other scenarios, they are local grids powered by alternative energy means. For instance, according to a 2014 article from Navigant Research, Alaska leads the world in microgrid deployment due to the small communities that rely almost exclusively on local energy – in some cases, 100 percent renewable energy. The viability of these kinds of energy distribution networks was not always apparent. For years, the United States has relied on a connected grid system that could be prone to huge shutdowns or security risks. As the technology has improved, microgrids that can disconnect from the macrogrid and function autonomously have opened huge possibilities for smart cities, the Industrial Internet of Things (IIoT), and more. Smart Cities Powered by Microgrids Smart cities rely strongly on the backbone of wireless technology. Imagine a scenario in which a city’s electricity grid went down, killing the wireless networks and effectively bringing any connected technology to a grinding halt. It could mean the shutdown of public transit, water and wastewater treatment facilities, electricity, vehicles, stoplights – the list can go on. Any IoT or IIoT systems would shut down. However, with a smart city set up with a microgrid concept, if a part of the macrogrid went down, microgrids could disconnect and allow normal functionality without service shutdowns. If hackers or other security concerns hit the macrogrid, microgrids can disconnect and protect the system from further threat. And, in many cases, microgrid technology is driving the rise of alternative energy and energy independence. Renewable Energy and Microgrids One of the main problems facing renewable energy has always been storage. How can renewable energy sources create excess energy and store that energy for future use in case of macrogrid failure? What cities and small towns are finding out is that by building a renewable energy system connected to a microgrid, they can effectively develop net-zero communities that don’t have to rely on energy storage in the instance of macrogrid failure. As these technologies have matured and become implemented in different use-case examples, the possibility for more intricate and complex systems is apparent. As the IIoT continues to adopt microgrid technologies and practices, industry practices will mature, creating greater efficiency both operationally and with regard to energy usage and distribution. The future of smart cities and a stronger connected infrastructure could be poised to accelerate along with the growth of microgrid applications.

FreeWave Named as One of “20 Most Promising Wireless Solution Providers 2017”

Today, CIO Review published it’s list of the “20 Most Promising Wireless Solution Providers 2017,” and FreeWave is excited to be included in that list along with many other notable industry leaders! CIO Review writes, “FreeWave delivers best-in-class wireless platforms for secure and cost-effective control, transport and collection of IIoT data.” Among other companies included in this report are Qualcomm, Mojo Networks, Brocade Communication Systems and NetGear. For the last two years, we have focused our new product engineering on developing a comprehensive collection of communication platforms, an Industrial IoT programmable radio (IPR), ruggedized WiFi platforms, and products with mesh networking and frequency hopping spread spectrum (FHSS) capabilities. In the last year, we’ve announced several new products designed to service a wide range of IIoT applications, including a pilot program for our IPR where third parties can develop proprietary IIoT apps for Edge and Fog Computing.   Join the ZumLink IPR Pilot Program today! https://t.co/bWVQM8Arun #IIoT #IoT #programming #AppDev #Wireless pic.twitter.com/Km06N4nukK — FreeWaveTechnologies (@freewavetech) April 5, 2017 It’s been an exciting 2017 so far, and we’re excited for what the future holds, both for FreeWave and for the IIoT industry as a whole!

Well-Pad Automation Through the CC1310 Wireless MCU

Oil companies use high-tech radios for production site automation in cool new ways. Competition in oil production can get pretty ugly, especially when the price of oil is low, as it has been for the past several years. To stay competitive against big players, smaller regional oil and gas companies are turning to well-pad automation practices to keep their costs low and their production reliable and steady. What is well-pad automation, you ask? Well, to put it simply, it’s the deployment of technology that monitors, measures and manages the production and storage of oil and gas at a well site or storage tank in real time. This technology includes sensors that measure pressure, temperature, flow, level and all sorts of other things that all need to work together in order for a well to produce, store or transport its product. Once these sensors are deployed, the next step is to add intelligence to automate certain functions that would otherwise require human intervention. Programmable logic controllers (PLCs) and remote terminal units (RTUs) are simple computing devices that automatically take action when certain conditions occur on the pad. But you thought this blog post was about fancy new high-tech radios – it is! Here’s where they come into the picture. Older radios transported sensor information from the well pad to an operations team, where they viewed the information and decided whether or not to take action. These radios generally transmitted at very low bandwidths (115Kbps-400Kbps), which severely limited the type and amount of data that could be transmitted. This limitation in many cases prevented companies from being able to take advantage of new automation technologies (like smart sensors and devices) that require more bandwidth. Today, companies like FreeWave Technology Inc. are leveraging technologies like TI’s SimpleLink™ Sub-1 GHz CC1310 wireless microcontroller (MCU) radio chipset as part of a new radio infrastructure that delivers much higher data rates. By combining the microcontroller, a highly optimized radio and an ARM® Cortex®-M3 48MHz application processor into one rugged, industrial-grade, low-power offering, well-pad automation can make a huge leap forward. These radio appliances can deliver data rates as high as 3.7Mbps over 20 miles in some cases, enabling oil producers to deploy more sensors and technologies that improve safety and operational efficiencies and reduce costs. Figure 1 below shows a picture of the FreeWave ZumLink Z9-PE IIoT Programmable Radio (IPR) with 512 MB of RAM and 1 GB of Flash. This device also runs third party and custom industrial applications.   Another cool thing about these radio appliances is that they are programmable. They come with an integrated circuit board (shown in Figure 2 below) equipped with an ARM processor; 512MB of RAM; 1GB of flash storage; and a Linux kernel with support for Python, Java, If This Then That (IFTTT) and many other programming languages. Deploying advanced intelligence into the sensor networks that run their production helps oil companies eliminate additional costs, gather and store more information, and engineer new applications that improve production and safety. Tank-flow management, intelligent security surveillance, data logging and pump shut-off are just a few of the applications that oil companies can deploy in these new networks. To learn more, feel free to check out the ZumLink IPR product page. More information on other products within the SimpleLink MCU platform is also available here. *This post was originally published on TI’s E2E Community blog, which can be found here.

IIoT News RoundUp – Security, New Products and More

The Industrial IoT (IIoT) continues to drive big news headlines. Recently we’ve seen news on security, connectivity and new products. We’ve compiled a handful of the most compelling IoT headlines from the past couple of weeks (including exciting news from FreeWave). IIoT in the News How I Learned to Stop Worrying and Love the Industrial IoT Posted on @RTInsights | By @joemckendrick “Moving to IIoT — to capture and be able to act on real-time information on production, machine health, facility conditions, supply chain movements, inventory, shipping, and a host of other capabilities — is nothing short of a new industrial revolution. Embracing these capabilities requires hefty investments, training, skills acquisition, re-directing of resources, and even re-thinking the business you are in.” Standardized Connectivity Protocols Lead to Growth of IIoT Apps Posted on @ITKE | By @S_Allen_IIoT “IIoT app development programs will begin to outgrow/outpace consumer IoT app development programs within the next three years. Third-party IIoT application development at the edge (i.e., fog computing) specifically will eliminate need for big data transmission capabilities. The ability to filter specific data needs directly at the source means less of a need to collect all the data for broad analysis.” First Industrial IoT Programmable Radio Enables World of Connected Possibilities Posed on @CEAsiaMag | By Lim Guan Yu  “The rise of Fog Computing as a driver of intelligent analytics created a need for industrial companies to transport more data faster from Edge sensors. Rather than transport massive packets of data – Big Data –a programmable platform deployed at the edge of IP networks enables sensor control functionality and allows them to send smaller packets of data as determined by the IIoT app. This results in Smart Data that streamlines decision making, provides predictive analytics for maintenance and support, and allows organizations to automate processes that previously required ongoing, manual attention.” Data Leakage And The IIoT Posted on @SemiEngineering | By @Chip_Insider “In the past, the complexity and size of an operation generally provided safeguards against data theft or leakage. But with commonly used data mining tools, it’s now possible to separate out meaningless shop floor data and hone in on the important events, which roughly adhere the 80/20 rule. Add in multiple companies and begin correlating bottlenecks and other noteworthy industrial events, and that data suddenly becomes much more valuable to a lot of people—makers of equipment, government or industry policies, marketing groups, as well as the highest bidders within a particular industry or those looking to invest in an industry.” FreeWave Technologies Updates New WaveContact Wireless Technology Solutions Posted on Yahoo Finance “WaveContact products interface with a wide variety of sensors deployed in industrial and critical infrastructure markets such as oil and gas, electric power, water and wastewater and environmental monitoring. The product line is built for short-range field applications where simplicity and ease of use in Class 1 Division 1 hazardous locations are critical for success.” Why Collaboration Is the Key to IIoT Posted on @automationworld | By Phil Marshall “Building the Industrial Internet of Things (IIoT) is a complex undertaking. When Hilscher started to create an IIoT strategy, we realized that no single organization would be capable of a total solution. Too much was involved across too many domains. Plus, there is a lot that automation vendors don’t know about IT, while the IT world also knows little about automation—at least for now.” FreeWave Technologies Teams Up with Alliance Corporation Posted on @IoTEvolution | By @KenBriodagh “FreeWave said it is expanding its traditional channel partner distribution network with new relationships with distributors who offer new avenues for sourcing through the channel. As FreeWave expands its product offerings further into the IIoT space, aligning and building relationships with partners, like Alliance, is a critical step in offering a full system of integrated hardware and software solutions.” Security Professionals Expect More Attacks on IIoT in 2017 Posted on @HeardOntheWire | By @notjbg “The fears of a large-scale attack waiting to happen were solidified this week when security firm Tripwire released the results of a study it performed about the rise of industrial IoT deployment in organizations, and to what extent it is expected to cause security problems in 2017. The IIoT includes segments ranging from critical infrastructure such as energy and utilities all the way to government, health care and finance. Not surprisingly, more than 50 percent of the security professionals surveyed said they weren’t prepared for an IIoT attack, and 96 percent expected to see an increase in such attacks this year.”

FreeWave to Attend Three Industry Events This Week

FreeWave is taking on three major events across the globe this week to showcase our latest and greatest Industrial IoT Solutions, including a couple new product releases (read about them here and here).  We will be attending IWCE, Internet of Things North America and IoT Asia. At IWCE and IoT Asia, we will be showcasing our latest technology in the exhibit halls. Find us at Booth #768 at IWCE and #E28 at IoT Asia. During exhibit hours, we will be offering live demos of our S2S communication solutions. We will also have company experts giving educational sessions at Internet of Things North America and IWCE. Here’s the rundown for each show: Speaking at IoT North America Sensor-2-Server: Execute Locally, Communicate Globally Wednesday, March 29 at 3:45 p.m. The idea of comparing data in motion (at the sensor level) to data at rest (in a big data server warehouse) with predictive analytics in the cloud is very appealing to many industrial customers. However, the problem is access to that data in motion at the sensor location. The increasing shift toward Industrial Internet of Things (IIoT) tends to bring up a lot of questions about the continued value of Supervisory Control and Data Acquisition (SCADA) systems that have traditionally served as the driver for monitoring and control in industrial markets. Although OT and IT are beginning to converge, there is still high demand for SCADA data. However, new technology offers the opportunity for data to be used in ways that were previously not possible, such as predictive analytics. This doesn’t make SCADA obsolete, as many operators are using it and will continue to employ it. Speaking at IWCE FAN, Smart Grid and SCADA: The Original IoT Thursday, March 30 in Room S224 from 10 a.m. – 11:15 a.m. The increasing shift toward Industrial Internet of Things (IIoT) tends to bring up a lot of questions about the continued value of Supervisory Control and Data Acquisition (SCADA) systems that have traditionally served as the driver for monitoring and control in industrial markets. Although OT and IT are beginning to converge, there is still high demand for SCADA data. However, new technology, such as Field Area Networking (FAN), offers the opportunity for data to be used in ways that were previously not possible, such as predictive analytics. SCADA may not be obsolete, but examine how it and FAN fit into this new world of smart grids and smart cities. Network Management and Cybersecurity for IoT: The First Step to Smarter Cities Thursday, March 30 in Room S224 from 11:30 a.m. – 12:45 p.m. IoT management systems that are able to extend control over a wide net of dissimilar technologies and provide relevant personnel with timely actionable-intelligence are essential components to these next-generation networks.  Examine the hardware and software of fully-automated management systems, able to function autonomously and “intelligently” beyond the network edge to collect, analyze and decide on the best course from a set of alternative actions. Then explore the security goals you need to have in place with the influx of IoT information and the resulting IT/ OT convergence, including who is responsible for the overall security of IoT management systems. Products Featured at IWCE Booth (#768) and IoT Asia Booth (#E28) WaveContact Family (https://www.freewave.com/wavecontact-wireless-oilfield/) – WaveContact Modular wireless systems provide rugged, simple and flexible communication solutions that are easily and quickly deployable. WaveContact products interface with a wide variety of sensors deployed in industrial and critical infrastructure markets such as oil and gas, electric power, water and wastewater and environmental monitoring. The product line is built for short-range field applications where simplicity and ease of use in Class 1 Division 1 hazardous locations are critical for success. ZumLink IIoT Programmable Radio (IPR) (https://www.freewave.com/products/zumlink-ipr-iiot-programmable-radio/) – The industry’s first wireless IIoT radio capable of supporting third party applications for Edge and Fog Computing in Industrial IoT (IIoT) communication networks. FreeWave’s IPR can support JAVA, Python, C, C+ and GO, and it connects to any IT device or sensor. The platform is capable of hosting third party and proprietary IoT applications for energy, utility, municipal, smart city, government and military use cases. ZumLink Z9-C and Z9-T (https://www.freewave.com/products/zumlink-900-series/) – Serial radio modules for OEM and Embedded wireless applications. The ZumLink Z9-C and Z9-T are ideally suited for unmanned systems and other industrial machines and solutions that require highly reliable, high-speed data communications and networking. WavePro (http://go.freewave.com/l/68372/2015-12-16/37myq8) – Designed to secure and transport Voice, Video, Data and Sensor (VVDS™) information, this cost-effective, high-speed, rugged wireless communication platform is specifically designed for outdoor industrial locations and has proven reliability in extreme environmental conditions. It’s an ideal field area network solution for oil and gas, utilities, mining, power plants, municipalities, disaster recovery or for any other applications that require remote and resilient Wi-Fi connectivity in nontraditional settings. Are you attending any of these events?  Be sure to stop by the IWCE and IoT Asia booths for a demo of our latest offerings. Or, stop in for one of our educational sessions.  

What’s Your Emergency Communications Plan?

As our cities become increasingly connected and transform into Smart Cities, there is an opportunity to streamline emergency communications. Cities and municipalities can leverage a variety of advanced technologies and incorporate them into their own emergency communication plans. Emergency management decision makers tasked with improving city-wide emergency and disaster plans now have access to technology that can assure connectivity in the harshest weather or environmental conditions; increase visibility into dangerous environments; and, optimize response times. Wireless Short-haul for the Win Wireless short-haul solutions can create an industrial-strength Wi-Fi connection that was built to withstand earth’s most challenging conditions. These Sensor-2-Server (S2S) types of technologies are used for a variety of municipal and government use cases, but they are particularly suited for outdoor communication needs. While they are often used for day-to-day use, such as traffic management, they are a viable option for providing secure, reliable connectivity as part of any city or local government’s emergency communication plan. VVDS for Emergencies With an industrially hardened, high-speed wireless short-haul solution in place, cities can experience the benefits of Voice, Video, Data and Sensor (VVDS) information, even when cell towers are overloaded. In a world where we increasingly rely on connectivity, it is essential to keep government and municipalities online during the worst-case scenario. Industrial-grade Wi-Fi that is tested and proven in the most extreme weather conditions is designed with that in mind – keeping local government officials and first responders online. As a result, rescue efforts stay motion. With a VVDS-enabled technology in place, first responders achieve additional visibility into conditions. This real-time view allows for fast action that minimizes collateral damage. It also protects first responders, giving them an advantage in dangerous situations and offering a real-time view of environment they are heading into. Secure, Reliable Solutions Industrial wireless short-haul networks also offer the benefits of being highly secure. There are solutions with encryption capabilities that prevent data hijacking. As more cities become Smart Cities, decision makers will need to make Smarter emergency communication plans that align with the new technology landscape. There are S2S solutions on the market today that are designed for unrelenting performance in the outdoors. These solutions enable better response times, secure data transmission, increased visibility and higher-level risk assessment. When emergencies strike, every moment counts. Having a reliable connection can make the difference in saving lives. Is your city leveraging wireless short-haul solutions for emergency preparedness?

IT/OT Convergence – The Impact from the Industrial Internet of Things

Without question, the number of connected sensors and devices on your IIoT network are going to increase, and also without question, the volume of data created by these devices on your IIoT network are going to increase as well. Both increases are intended to improve operational efficiency and streamline business processes. As a result, your Information Technology (IT) and Operational Technology (OT) departments will likely need to adopt new strategies.  An increasingly popular strategy is IT/OT convergence. The Bandwidth Burden For many industries, SCADA and M2M networks have historically used serial communications for operational networks. This has changed and is changing for many. As networks transition from serial to Ethernet communications, data is now freed for routing to any business system. There is a new twist for SCADA, M2M and now IIoT networks that have limited bandwidth capabilities. With more business systems needing critical data to improve business process, utilization of bandwidth on networks with already-limited bandwidth is also increasing based on the traditional Poll/Response or Request/Response model. To reduce the bandwidth burden, systems are now transitioning from Poll/Response operation to a Publish/Subscribe model. There are several benefits to the Publish/Subscribe model. Sensors or devices in bandwidth limited networks can publish data when events change or select criteria are met. This reduces the demand for network bandwidth in two ways; 1) there is no prerequisite Poll message, and 2) devices publish when needed. Publish data is routed to a Broker or Publish/Subscribe server that operates on networks where network bandwidth is not a limitation so any number of subscribers can subscribe needed data without burdening the IIoT network. While the Publish/Subscribe model is a significant improvement to IIoT network efficiency, it is not a panacea for all operational information. Network monitoring systems, e.g. SNMP based systems, will still need to poll devices to gather operational, performance and prescriptive data; essential for proactively maintaining an efficient and operational IIoT network. Secure Devices to Support Convergence Newer sensors and devices are also being designed with security in mind because no legitimate manufacturer wants their IIoT device to be part of a DDoS attack, as we saw in 2016 with the Mirai DDoS attack. While IIoT device security services and features are rapidly improving, it is still incumbent on OT and IT organizations to: Train personnel on network security because the human element can still be the weakest part of any network, e.g. phishing emails, Deploy networks with Defense in Depth so there are numerous barriers to obstruct and deter entry with timely audit trails to identify entry, and Perform periodic Risk Assessments and implement action plans. SCADA, M2M and IIoT networks are operating more as IT networks thanks to the close work between OT and IT groups and their convergence. Want to learn more on this topic? Join my presentation at the ENTELEC conference on Thursday, April, 27, 2017 at 2 p.m.

What’s New in IIoT

Industrial IoT (IIoT) is making waves as we inch closer to the end of the first quarter of 2017. Recently, Network World and Forbes,  published articles exploring the proliferation of Smart Sensors deployed for Edge networks. We are starting to see more coverage addressing the big challenges of IIoT, as well as the big opportunities. Other, IIoT-focused publications continue to highlight the latest mega-trends and research from leaders in the IIoT trenches. Recent IIoT Headlines Four Artificial Intelligence Challenges Facing the Industrial IoT By @AAllsbrook | Published on @Forbes “Companies building IoT devices are solving this challenge by using gateways, also known as edge-based processing, to connect to cloud-based IoT platforms. This enables the machines to get data to the internet. However, connecting devices isn’t as easy as updating software; instead, it’s an investment in retrofitting old machines, replacing existing equipment, and enabling a workforce to leverage this equipment.” 5 Things to Think about for Industrial IoT Readiness By @ryan4francis | Published on @NetworkWorld “In order to achieve the full potential of the IIoT, the gap between these two cultures needs to be bridged so that the competing priorities of IT and OT are met. We’re beginning to see the emergence of “industrial technologists,” who bring a combined IT/OT perspective to the enterprise. These “industrial technologists” understand that for IIoT to be a reality, “always on” availability needs must be met. Because they live in both worlds, they play a key role in meeting both OT and IT priorities.” 3 Keys to Financial Success in the Industrial Internet of Things By @Scott_Nelson19 | Published on @CIOonline “One of the most frequent misperceptions about the IIoT is that it is all about the machines. Traditionally automation saves cost by reducing the number of people required to operate the line. The machines are important, but today operational improvement, particularly of legacy systems, comes from leveraging and facilitating human knowledge and action.” IoT Edge Shifts Data Gravity in the Enterprise By @AAllsbrook | Published on @iotagenda “But the internet of things is changing this gravitational constant in our technical universe. As IoT matures, the black holes of data gravity we have been placing into clouds will be ripped apart by millions of smaller data planets. These smaller planets will be located in our factories, warehouses, buildings, homes and everywhere else IoT runs to make data actionable.” Smart Grid: Overcoming Data Exchange to Increase Efficiency By @S_Allen_IIoT | Published on @SmartDataCo “As sensors bring connectivity to more endpoints than ever before, utility decision makers are able to obtain detailed data for Advanced Metering Infrastructure (AMI) and Distribution Automation (DA) networks. With rugged wireless solutions, the sensor data is readily available in real-time for IT decision makers. The unrestricted access to data from all network endpoints forces decision makers to shift their focus from Big Data to Smart Data – the data that matters most to the business. It also drives the need for real-time analytics in order to streamline operations. This not only simplifies the convergence issue, but it drives Smart Grid efficiency.”  

Smart Grid: Overcoming the Challenges to Increase Efficiency

Recent research estimates that the Smart Grid will be a $120 Billion industry by 2020. As Industrial IoT (IIoT) drives digital transformation for utilities, there are a fair share of challenges and opportunities facing the Smart Grid industry today. To keep up with rapid growth and new technology that is shaping the utility markets in particular, Smart Grid decision makers must continue to improve efficiency. This allows the organization to leverage better data and make smart business decisions that align with an increasingly connected infrastructure. The Convergence Challenge In utilities markets, the IT/OT divide is rapidly shrinking, revealing significant challenges between the two groups. OT and IT each come to the convergence line with functional and operational differences, yet the changing technology landscape makes it impossible to avoid the inevitable meshing of the two formerly disparate organizations. As Smart Grid decision makers adjust to this shift, strong communication between teams will be essential –  as well as careful selection of technology. For example, if utilities can work to integrate their legacy systems on the OT side with the more modern IT systems through a carefully selected communication solution, the Smart Grid will become more efficient, leading to better business decisions, as well as improved system operations and overall visibility. Going Digital IT/OT convergence, coupled with the new digital landscape has also driven Smart Grid organizations to reorganize under IT and address new technology challenges from a jobs perspective. Utilities are facing an ageing, traditional workforce on the OT side coming head-to-head with a new digital-centric workforce on the IT side. For Smart Grid organizations, it is essential to find the balance between hiring new technology savvy talent and nurturing existing staff. IoT will continue to drive automation, as Smart Grid decision makers either upgrade their legacy systems or figure out how to connect existing ones. We may see an increase in privately funded secondary education programs designed to create a more skilled workforce. If decision makers embrace the inevitable shift to digital, they will not only see the impact on efficiency, but they will stay competitive in an IoT driven market. Smart Sensor Boom IoT sparked a digital technology shift that resulted in the proliferation of Smart Sensors. Now utilities are able to monitor and transfer critical data from any asset – from the network Edge back to the central office. The demand for sensors hasn’t slowed – research is pointing towards continued and substantial growth in the Smart Sensor market between now and 2021. As sensors bring connectivity to more endpoints than ever before, utility decision makers are able to obtain detailed data for Advanced Metering Infrastructure (AMI) and Distribution Automation (DA) networks. With rugged wireless solutions, the sensor data is readily available in real-time for IT decision makers. The unrestricted access to data from all network endpoints forces decision makers to shift their focus from Big Data to Smart Data – the data that matters most to the business. It also drives the need for real-time analytics in order to streamline operations. This not only simplifies the convergence issue, but it drives Smart Grid efficiency. There are many factors contributing to the efficiency of the Smart Grid. While some initially present themselves as challenges, increasing connectivity and digital transformation give decision makers better data, connect more field assets and enable more opportunities to benefit the business.

News Round-up: Wireless and Ethernet

As the Industrial Internet of Things (IIoT) drives the production of connected devices, wireless and Ethernet-based technologies have become an important piece of the connectivity conversation. Entire industries are making digital transformations and it’s changing the way businesses operate. There are billions of IoT devices in service and development continues to ramp up. Recently, we’ve seen several wireless and Ethernet technologies headlines in the news. Wireless and Ethernet News Is Ethernet Coming to the Network Edge? By David Greenfield | Published on @automationworld “We’ve tarBygeted a small scale, single-chip processing solution (to bring Ethernet to industrial edge devices) by reducing processor speed, memory and RAM size, reducing the interconnection complexity from processor to network interface, and reducing the pin count and complexity of the network interface,” said Weingartner. Essentially, “we’re bringing MAC into the PHY (the physical layer of the OSI model which connects a MAC to a cable), which is what Ethernet is all about. Doing this opens up possibilities not just for new implementations, but for brownfield applications as well.” Wireless Electric Cars About to Hit the Road By @robnikolewski | Published on @sdut “What’s called dynamic charging foresees a future where vehicles charge themselves as they drive. Using coils embedded in roads, EVs would refuel as they stay in transit, creating their own self-perpetuating electrical loop. It’s similar to the way some mobile devices get charged.” The Ethernet Ecosystem Today is Driven by Applications, not Speed Alone By  David Chalupsky | Published on @networks_asia “For many years, Ethernet evolution was characterized by the “need for speed” as networks and data centers sought higher and higher throughput. But over time, Ethernet has found its way into applications unforeseen by the developers of the original specification, resulting in a broad and varied Ethernet ecosystem. Today the desire to bring the advantages of Ethernet into new applications necessitates a new approach where the needs of the application are considered first and foremost in defining new Ethernet incarnations.”  Actualizing the Internet of Things Starts with Wireless By @robrueckert | Published on @TechCrunch “The most promising of wireless power technology seems to be radio frequency. With its apparent lack of serious problems and its unique strengths, radio frequency has the greatest long-term potential to become the market’s leading source of wireless power to fuel the Internet of Things. No significant evidence exists depicting radio frequency as posing a threat to humans. The human body consists mostly of water and radio waves do not transmit energy through water. Radio frequency is also highly configurable. Devices sending and receiving radio frequency power can easily be equipped with regulators, enabling control of how much power will be emitted and received.”

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.

Did you find what you were looking for?

Please let us know if you didn’t find what you were looking for so we can help make the site better for you.