IoT Top News: M2M Propels Machines

Time and again, those keeping a pulse on the Internet of Things (IoT) space frequently hear about the “rise of the machines.” Humanity is not only discovering fascinating ways to integrate machines into our daily lives, but also finding new uses for machines as well. How? Machines are now “internet-connected” just like the smartphones we carry around in our pockets. And this isn’t just on the commercial side with the likes of smart thermostats or connected vehicles – even tractors and oil and gas machinery are industrial examples of where new “things” are now on the digital network. In fact, there are more M2M or “machine-to-machine” communication devices on this planet than humans. As GSMA Intelligence reported in 2014, there are 7.2bn M2M devices versus 7.19bn humans. Stuart Taylor from Cisco also wrote a prediction that “The Internet of Things (IoT) is a world where up to 50 billion things (or devices) will be connected to the Internet by 2020; or, the equivalent of 6 devices for every person on the planet.” Realizing the major role M2M devices continue to have in our connected world, specifically as it relates to the advent of machine learning, it’s only natural to highlight the impact of machines and M2M in the past, present and future. The Machines are Coming: How M2M Spawned the Internet of Things In the digital world, M2M wireless solutions will work for us quietly, in the background solving all our day-to-day needs. John Kennedy with Silicon Republic reports that, “M2M is at the heart of the industrial internet of things (IIoT), powering smart factories that can be run remotely from a tablet computer, and smart buildings that monitor their environment and feed data back to the cloud.”   Is Machine Learning Over Hyped? In the now 24-hour news cycle, often the top news lingers around lighter topics. So how much hype should be given to machine learning (ML)? The Huffington Post respondent Scott Aaronson, theoretical computer scientist at MIT, seems to think that “There’s no doubt in my mind that people 30 years from now will agree with us about the central importance of ML, but which aspects of ML will they rage at us for ignoring, or laugh at us for obsessing about when we shouldn’t have?   Machine Learning: Demystifying Linear Regression and Feature Selection Machine learning needs to integrate domain knowledge in order to improve the quality of data collected from analysts. Josh Lewis with Computerworld thinks that, “Business people need to demand more from machine learning so they can connect data scientists’ work to relevant action.”   Machine Learning Examples Crop up for Data Center Management Data centers appear to be the perfect place for enterprises to implement machine learning to its fullest. Christopher Yetman, COO at Vantage Data said, “There are also sensors that generate data about air pressure, humidity, temperature and supply voltage and typically feed into a programmable logic controller.”   M2M Technology Driving Agriculture’s Industrialization  On a global front, M2M is driving agriculture’s industrialization in South Africa. IT News Africa informs us that, “Given the ability to automate many monitoring and control functions through intelligent devices, agriculture is a prime target for leveraging M2M capabilities.”   We hope you have enjoyed this week’s roundup, and as M2M connections continue to pile-up, we urge you to consider the plethora of commercial and industrial use cases that can benefit from these innovations.

IoT Top News: Future is Now

The Internet of Things (IoT) is creeping into every aspect of our lives. With the advent of smart cities, smart manufacturing, precision agriculture, drones and digital energy, businesses and individuals alike have seen the influx of IoT technology. For example, a recent report from Gartner, “suggests that more than 26 billion devices will be connected to the internet by 2020, with 250,000 of them being vehicles.” So, with the billions of connected things, its only natural this week’s top news roundup would highlight how IoT is maturing and what experts see for the future ahead. Research Firm calls for Standardized IoT Deployments As the demand increases to make more smart cities, researchers warn of extra costsand fragmented delays if we don’t create overall IoT standards. Machina Research reports, “Using current non-standardized  technologies, it would cost 1.12 trillion dollars to get smart cities up and running by 2025. Were a standardized approach adopted, the total cost would be 781 billion dollars, a savings of 341 billion dollars worldwide.”   Is Automation the Key to Unlocking IoT Data? The best approach to implementation is a combination of data analytics with real-time automated wireless results Dave McCarthy senior director of products at Bsquare suggests that, “The goal of any IoT system should be to extract business value from device and sensor data.”   Three Ways to Leverage IIoT Some of best ways to leverage Industrial IoT is by learning to adapt machine learning(M2M), embedded sensors and an overall operational shift allowing the wireless technology to be implemented across the business. Scott Stone with Plant Engineering informs us that, “Accenture predicts that vendor-specific and proprietary infrastructure will be replaced over time with interoperable platforms. Harnessing the data through sensor-driven computing, industrial analytics and intelligent machine applications opens the door for innovation.”   Internet of Things Offers Vision of the Future IoT is not a new concept, it has actually been around for 30 to 40 years, yet the future of IoT will still be fueled by security and integration concerns as our need to be connected everywhere continues to grow. Basher Saajid with Liberty Voice reminds us that, “Forbes has reported the overall IoT potential to generate additional $10-$15 trillion for the world GDP by 2034.”   We hope you enjoyed this quick look at IoT top news, as always tell us about the stories you found of interest!

Digital Oil: Wireless Means Safety & Efficiency

Production demands of the 21st-Century change at an extraordinary pace. Industrial markets, such as energy and oil & gas face challenges going forward, including the reliable monitoring of assets in the field, dealing with 24×7 production demands, and managing high costs in terms of both time and resources to manage assets in remote locations. These market forces have naturally led to the emergence of the industrial internet of things (IIoT) and wireless communications technology. If you’re an operator in the field, you’re well aware that wireless IoT technology is changing the level of safety, efficiency and monitoring available on the rigs. Let’s take a moment and look closer at how these changes are impacting the digital oil field of today. Why? The consequences of incidents, such as natural gas pipeline explosions, have contributed to the demand for more safety and monitoring regulations along pipelines. California for example, saw tightened state regulations as a result of the San Bruno disaster, which included more stringent requirements for pipeline monitoring. Across industries such as oil and gas, there are certainly areas with the presence of hazardous gasses and therefore potentially dangerous environments.   Safety First Taking a closer look at safety on an oil field, we realize just how dangerous it can be for people to be on or even near a production site. Advancements in IoT are now more important than ever because they allow more oil and gas companies to enable a digital work environment – not just from an operational perspective, but from a worker health and safety point of view. Safety concerns to be addressed are the elimination of manually painstaking tasks related to checking on-site sensor data or heavy machinery that resides in potentially hazardous environments – for example where explosive gases are present. Safety is now being increased by taking away the pen and pad from the technician and automating wireless remote monitoring capabilities to enter readings, pressures, temperature and other production monitoring values from miles away. Because of this evolution, many technicians have updated their skills in order to provide value in a digital age and the skills gap here is also an emerging issue for energy producers to keep in mind. Jens Norgaard, SafeEx Business Development Director reports that, “There is no doubt that the younger generation…are running around with high tech equipment…and it’s much more sexy using an electronic tool than using pen and paper. Most technicians have taken a technical education because they want to use their hands and are not always very keen on doing administrative work. So if you can reduce the amount of that it will become much more attractive for younger people to do it.”   Highly Efficient and Operational The hope with any advancement in technology is that our world will be able to run and function more smoothly. According to LR Energy’s annual 2015-2016 Oil & Gas Technology Radar survey of global oil and gas executives, “the top driver of innovation investment is operational efficiency.” As wireless IoT solutions continue to infiltrate the oil rigs and pads of today, it is only natural to question the operational and efficiency state of things. Over the next decade technological implementations are expected take more people off the drill floor and into the office allowing companies to fill the knowledge gap with remote drill sites, thus paving the way for more automated oil fields. Pierre Sames, DNV GL director of research and innovation in Norway suggests that, “These technologies will help the industry to be more cost efficient in operations, which is very much needed due to the current oil price crisis.” Keeping Production High with High-Tech Whether you are working with an offshore or onshore rig, the ability to seamlessly monitor and control the operations of a oil rig or well pad automatically from an office location is a key component of IoT and an evolution of the digital oilfield. Natural Gas Intel (NGI) informs us that, “One of the most anticipated technologies, automated drilling in the offshore and onshore, could reduce drilling times and costs by up to one-third versus conventional drilling rigs, ensuring more wells are economically feasible, able to hit smaller targets and generating more infill production.” It seems apparent that we are on the midst of an industrial revolution where blended technology ecosystems are going to be the core of what makes modern energy producers competitive. Just think of the combination that Voice, Video, Sensors and Data can have if applied together in a holistic fashion. “Expectations of fully automated drilling operations, autonomous pipeline inspections and the expanded use of natural gas to fuel trucks and railways are likely to be at the forefront by 2025,” industry consultant DNV GL said last month (see Daily GPI, April 6). By 2025, the energy industry will become increasingly “automated, digital and smarter,” according to DNV’s Technology Outlook 2025. What’s next for the oil and gas industry? Join us this week at the 91st International School of Hydrocarbon Measurements(ISHM) conference in Oklahoma. ISHM is designed to educate and update you on the latest technological advancements for the oil and gas industry. This year you will have an opportunity learn with both lecture and hands-on classes as well as network with fellow industry peers. Cannot join us in Oklahoma? Feel free to download the “Building the Digital Oilfield of the Future” white paper for insights into how wireless IoT technology is redefining oil field production and data communications.

XPONENTIAL Recap: Drones and so much more

New Orleans had its sights in the clouds for this year’s AUVSI XPONENTIAL conference. A leading national show for unmanned systems aimed to provide entertainment, education and networking opportunities for more than 8,000 industry leaders and professionals from 55 countries. XPONENTIAL focused this year on oil and gas; agriculture; energy and utilities; construction; and command and control defense applications. Starting off with a bang, national main stream media was drawn to those unmanned crafts in the sky, of all shapes and sizes headlining at this year’s XPONENTIAL. NBCs TODAY Show anchor Gabe Gutierrez captured a stroll through drone road, where every craft in a mile radius magically took to the sky as Gutierrez walked by. A common theme from this year was… The XPONENTIAL team consistently found ways to remind us all how intelligent robotics will continue to transform our business, travel and everyday security. This level of awareness was their way of educating everyone to embrace this technological shift. It’s about time for an FAA perspective! FAA Secretary Huerta found time during the action packed few days to sit down with Miles O’Brien to discuss trending topics and regulation over this coming year with more UAS registered and flying in the skies. Now let’s see what drones are charging into the agriculture scene this year! Farming will never be the same, now that Yamaha is creating a sprayer drone. This UAS wowed the crowds at XPONENTIAL in true rockstar fashion, reminding us all that the future of agriculture will be merged with technology. And it wouldn’t be proper to end this post without at least one brass band shot; we are in New Orleans, folks! This brass band gave the XPONENTIAL crowd a warm southern welcome as the show got under way! We also were thrilled to speak with the show organizers about how “IoT Rides on FreeWave Tech” in regards to debuting a beta version of new radio technology that leverages the Internet of Things movement to allow developers to program the product to perform functions previously unavailable on radios. Thanks to the XPONENTIAL 2016 Team and congratulations to all that made New Orleans a hit this year!

IIoT Top News: Industrialized

As machines are increasingly connected to the internet, it’s becoming easier to discover the numerous ways Industrial IoT (IIoT) is helping to shape the business world. This is exactly why we have decided to take a closer look at this pervasive movement and to examine the desire to connect more things! Now if you need a refresher on IIoT and how it is changing the world, take a moment and listen to Greg Gorbach with ARC Advisory Group. Gorbach believes, “IIoT will significantly change the world. You won’t participate with conventional thinking and an incremental approach.” So, you understand some of the ways IIoT will vastly improve how businesses function. But did you realize IIoT is more than just connected devices and smart machines? George Deeb with Forbes reminds us that IIoT impacts manufacturing, energy, oil and gas, healthcare, IT and much more. Deeb reports that, “Gartner predicts the IoT industry to be $1.9TN in size by 2020, and McKinsey thinks it could be as large as $6.2TN by 2025, in terms of economic impact.” Are we ready for it? Although the industry has excepted the new buzzword “IIoT” we still need to make sure the equipment and software are able to interact together or we are just adding more problems to the mix. Maria Ferrante at Packing World informs us that, “The Industrial Internet of Things has moved into the pantheon of 21st-century packaging buzzwords alongside RFID and Sustainability.” Alright! So how is IIoT changing the oil and gas industry? The Oil and Gas industry has seen an increase demand for more of wireless cloud IIoT technology and M2M solutions as the price of a barrel of oil dips down to a new all time low. Live Mint reminds us that, “Oil and gas companies are increasingly leveraging cloud technologies to more rapidly unlock the value of other digital technologies—especially analytics, IoT and mobility.” That’s all for this week’s recap, but there’s more! Now that we are into the beginning of Spring, it’s important to see how some of the 2016 IIoT predictions are shaping up. In case you have any thoughts on our IIoT predictions for 2016 (or have any new predictions your own), it’s not too late to iterate on them into the comments section below!

Drone Innovation: Supporting 2016 and Beyond

Drones are an interesting case study in the technology maturation process. Previously only available for military and defense applications, drone use have spread through the industrial and consumer markets faster than nearly anyone, especially the FAA, was prepared for. Despite the regulatory issues that have accompanied this growth, users are finding increasingly innovative and creative applications for the technology. This week, we’ve looked around for drone applications that really caught our eye for the potential long-term implications to the respective industries. Of course, for every example we’ve found, there are hundreds more. Let us know which applications you find most interesting! In case you need a recap, Donald Bell, with CNET highlights five industries that will be dramatically changed by drone use. Now that you are caught up on basics, check out the way drones are poised to save lives in remote areas of Malawi. The biggest problem with testing children in remote areas is the cost to get to the remote area and the time it takes to receive the tests back at a lab for testing. If Malawi is able to substitute drones for the courier service, they will save valuable time and be able to start treating. The Guardian reports that “Working with the government, Unicef is considering using drones to transport medical tests and blood samples from rural clinics to laboratories, avoiding the rutted roads that make even short journeys uncomfortable and unpredictable, partly because of fuel costs and a lack of motorbike drivers.” Drones can save lives, but can they also help us improve the experience on the links? Golf just got a whole lot more interesting in Japan! A new company has created a drone that with one click of your smart phone will bring you more golf balls or a refreshing beverage. What will drones do next? If your answer is, “finally make some of Batman’s crazy tools work in real life,” you would not be far off. Check out this footage from New Scientist of a drone mimic the flexible wings of a bat. Perhaps it’s simply a matter of time before we can strap on our utility belts and batwings and save the world… On the industrial side of things, drones are being used to gather data and infrastructure-related inspections, like bridges. The benefits for this project are twofold: drones could reduce the number of humans needed for the job, and they can also make the job safer by inspecting the more dangerous sections of the bridge. The Minnesota Department of Transportation has also tested the viability of drones for bridge inspections. It’s certainly a viable option that can translate across many industrial applications. Finally, what kind of society would we be if we didn’t begin to prepare our drones for the inevitable future of light sabers and hand-to-hand combat? All jokes aside, teaching drones to have this kind of reaction time to obstacles mid-flight could mean a step forward in some of the concerns about the use of drones in airspaces. For now, though, let’s appreciate this drone-turned-sword-evader. What else is out there? Let us know what you’ve seen around the world with drone applications!

Robots Will Steal Your Future Paychecks

We’ve spent many words on this blog talking through new Industrial IoT technologies, hardware and software, and the way that the status quo has shifted to demand better connectivity, smarter infrastructure, and better access to real-time data across the spectrum. Where we haven’t spent much time is considering the economic impact these technologies will have on the average person. Without looking too far into the future, we can already see the impact of a more automated workforce. With that in mind, and on top of all our other daily worries, do we need to be worried about robots stealing our paychecks in the future? Eric Brynjolfsson, recently presented a TED Talk about this very topic, but unlike the sci-fi fear mongers, Eric had a different approach. Brynjolfsson suggests we stop trying to compete with machines and focus in on how they can complement our work-life. It’s true today it takes less people to get the job done. This shift to automation is forcing companies to rethink infrastructure and think more about speed, efficiency and overall time.  This isn’t the time to reinvent the wheel, it’s time to think about how that wheel can be tweaked to operate more smoothly and consistently over time. Now, before you let your imagination run wild of a robot powered world, that will be lucky to be apart of, take a moment and watch Brynjolfsson’s TED Talk. Not to worry there is still hope, you may not have to hand over your paychecks to tomorrow’s robots, just yet!

First Responders: Saving Lives, Time and Money Through Innovation

How the Internet of Things is Changing the Landscape for First Responders and Industry According to the National Fire Protection Association, in 2013 there were 369,500 home fires causing some $6.8 billion in damages1 — plus an additional 98,000 apartment structure fires contributing an additional $1.6 billion in losses2. A frightening picture, isn’t it? The numbers are staggering — and yet innovation for emergency responders at both a local and national has not been a priority. The Internet of Things (IoT) aims to change that. Companies are now exploring how IoT technology can disrupt the way emergency responders do their jobs, saving countless lives and millions of dollars in the process. The IoT also holds immense promise for industrial applications, which often take place in remote locations where connectivity and communication platforms are rarely available. The IoT is a vast world, enabling the physical world to communicate with the digital world in new and amazing ways. But thanks to innovations fueled by companies focused on industrial, military, and government applications, we can traverse beyond a network of connected thermostats and smart TVs into an environment where first responders, industrial crews, and our military can communicate and receive critical information in real time.     An example of technology that is changing the world of emergency responders as well as industries like Oil and Gas, the Military, and Utilities are ruggedized, industrial shorthaul and Wi-Fi platforms that offer secure collection, control and transport of Voice, Video, Data and Sensor information at incredible speeds. So what does this mean for the industries mentioned above? Imagine first responders being enabled to pull up building plans and architectural details as they arrive on scene. Structural notes are delivered at incredible speeds, giving the emergency responders valuable insight into stairway and fire escape placements and potential danger zones. Communication between police, fire crews and ambulance drivers is streamlined — delivered at blazing fast speeds. In other situations, police can access vehicle databases or hospital services, preserving precious minutes than can mean the difference between life and death. For industrial applications, the IoT holds promise for new levels of connectivity — enabling crews to access and consume information at a moment’s notice. This means workers can collect and transmit important data quickly and securely — even in harsh conditions. Beyond connectivity, the Internet of Things also holds massive promise for the monitoring of emergency responders and industrial crews in the field. Critical sensor data — such as oxygen levels, body and ambient temperature, heart rate and more — can be viewed in real time, giving the ability to monitor the vitals of emergency responders and workers in an instant and watch for danger signs and track bio data in the field. This data can be logged and analyzed, fueling innovation that will help keep these employees safe. The IoT is a vast and ever-growing field — and it holds incredible promise for making our cities a better and safer place to live and work. For emergency responders, where seconds saved can be lives saved, and industries where time is money, the IoT holds remarkable promise for changing the way we communicate, gather data, and work in the field.   ————- Sources: 1 – http://www.nfpa.org/research/reports-and-statistics/fires-by-property-type/residential/home-fires 2 – http://www.nfpa.org/research/reports-and-statistics/fires-by-property-type/residential/apartment-structure-fires

Who’s Your Betamax of IoT Standards?

Image Courtesy of Flickr Creative Commons In the world of IoT/IIoT an explosion of standards has fallen upon us. While we all can agree that standards are what binds our current communication infrastructures together, it does take time for the victorious standard to rise to the top of adoption. Some of us remember the battle that arose in the video tape arena between VHS and Betamax (https://en.wikipedia.org/wiki/Videotape_format_war). While Betamax’s claim to fame was the superior picture, VHS had the longer recording time and a larger backing from the industry. In the end VHS won. And who can remember the tale of HD-DVD vs Blu-Ray, token-ring vs 10Base-T or WiMax vs LTE? Enter the IoT/IIoT wannabes.  In the communication protocol arena we have standards such as 802.15.4 (ZigBee), 802.11ah (Wi-Fi HaLow) and LoRa that want to use the 900 MHz spectrum to connect your devices back to a gateway and then to your cloud.  There are also application software framework standards such as Thread, Alljoyn, IoTivity, Arrowhead and LWM2M.  I won’t even mention all of the cloud platforms that aim to bring all of these pieces together in one place. Really, how many people think about the actual physical mechanisms that enable connectivity throughout the world? And within that, who thinks about the standards set by organizations that dictate the best method for connecting all our devices? Standards have the potential to affect ranges of communication, battery life on remote devices, signal interference, and many other things. The interesting part about the race to the top, so to speak, is that the standards mentioned above all have viable aspects that could potentially make them the ideal solution for connected infrastructure. Many of these standards have consortiums with major players such as Google, Microsoft, ARM and Samsung, all of which play at different places in the IoT/IIoT theatre.  So, unlike the tail of Betamax, many of these standards have the backing of multiple entities.  But, who’s going to win?  Which standard will come out on top? Or, will we find ourselves with multiple standards because we can’t agree on one to do the job?  What do you think? Who is your Betamax pick for IoT/IIoT?

Difference Between Data Sheet Transmit Power & Data Stream Transmit Power

Image courtesy of Flickr Creative Commons You need to link a two production sites together in your IIoT network in order to move critical voice, video, data and sensor data (VVDS™) between the sites by deploying access points. So, you consider using industrial Wi-Fi Access Points to implement this short-haul, point-to-point (PTP) RF link between the two sites. Short-haul RF links out to 8 miles are very doable using industrial Wi-Fi Access Points with directional antennas. You evaluate potential Wi-Fi Access Points from their data sheet specs. This is given, and you select one. Now, there is one specification that is commonly misunderstood and leads to confusion when evaluating MIMO capable Wi-Fi Access Points and using them in either PTP or point-to-multipoint (PMP) IIoT networks as wireless infrastructure. Confusion and mistakes arise from the difference between the transmit power stated on the product data sheet and the transmit power of a single MIMO data stream of the Access Point. For example, a 3×3 MIMO Access Point data sheet states the transmit power is 27dBm for MCS4/12/20 data encoding in either the 2.4 or 5GHz band. This is typical, and not a surprise, but what is this transmit power really stating. The FCC limits and regulates maximum transmit power from an intentional emitter, e.g. Wi-Fi Access Points. For Wi-Fi devices, the limits apply to the aggregate transmit power of the device. In above product spec example, the transmit power stated is the aggregate transmit power for the 3 MIMO data streams. Still good? Yes. You have a Wi-Fi Access Point and the total transmit power is 27dBm. Now, you design your short-haul PTP link using Wi-Fi Access Points and directional antennas. What transmit power do you use in your RF link budget? 27dBm since it is the transmit power for the Access Point for the data encoding and the band you plan to use. Right? No. While 27dBm is the total aggregate transmit power for the Access Point, it is not the transmit power of an individual data stream. The individual data stream transmit power is roughly 5dB less than the aggregate transmit power found in the data sheet for a 3×3 MIMO product. Difference in Transmit Power versus Aggregate Power 1 Data Stream transmitting at 22dBm    —  Aggregate Transmit Power is 22dBm 2 Data Streams transmitting at 22dBm  —  Aggregate Transmit Power is 25dBm 3 Data Streams transmitting at 22dBm  —  Aggregate Transmit Power is 27dBm So here it is… If you use the transmit power from the data sheet in your RF link calculation without correction, your actual link distance will be approximately half what you expect for the planned fade margin or the link reliability will be less than what you expect for the planned link distance. When designing RF links for the IIoT networks, make certain you are using the correct transmit power in your RF link budget calculations.

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.