Remote Tank Level Monitoring and Automation

Industrial livestock operations have several critical needs in order to function smoothly, but perhaps most important is also the most fundamental: water. On remote sites, tank level monitoring and automation are tools that can essentially make or break the entire operation. In many of these situations, the needs of the site managers are different, so in order to maximize the technology being deployed to drive the automation process, they need to be able to customize the functionality. For operations using radio communication networks, those radios need to provide maximum programmability in order to host third party applications specific to the needs of the site managers. We recently finished a deployment that serves as an excellent case study for remote site tank monitoring deployments and included some interesting uses of radio programmability: The operator of a Rocky Mountain based livestock facility approached FreeWave to assist in remote data visualization of water tanks that are vital to its operations. The pain point was that the tank levels could only be observed visually on premise. After consideration of the terrain (mountainous, remote and big temperature swings), sensors and communications infrastructure, FreeWave engineers recommended ZumLink IPR with the Node-RED programming language for intelligent tank data visualization via browser or mobile device. The facility has minimal to zero staff most of the time. If a fault occurs such as a leak that prevents a tank from filling, the facility operators are unaware until they visually inspect the remote faulty tank, located a half mile from property headquarters. The operators wanted to reduce the number of trips to the tank facility and remotely monitor all tanks via web-based browser or mobile device. For the complete case study, visit this link: https://www.freewave.com/case-studies/remote-tank-monitoring-automation/.

Do Drones Help or Hurt Wildfire Fighting?

Summer wildfire season is in full swing across North America, and the question of the utility of drones is once again in the headlines. The technology has proponents on both sides, but it has also been linked to several incidents, including the grounding of critical aircraft in a firefighting effort in Arizona. A key point of differentiation in this discussion is the use of personal drones, similar to the one mentioned in the article above, and commercial drones designed to serve a specific purpose in operations, similar to military or first responder deployments. The problem that firefighters face is the unauthorized use of personal drones, which can create dangerous situations for support aircraft like helicopters and tanker planes. Because firefighting aircraft fly at such low altitudes, they share the same airspace as commercial or personal drones, and at that altitude, one instance of interference can be deadly. A recent Quartz article pointed out the correlation between drone interference and the effect it can have on the people most impacted: civilians and the firefighters themselves: The drone problem has plagued fire departments for the last few years; In 2016, during Utah’s massive Saddle fire, a drone prevented firefighting planes from taking off—if the planes had been able to attack the fire from above, people would not have needed to be evacuated, according to Utah governor Gary Herbert. So far, in 2017, there have been 17 incidents of unauthorized drone disturbance in wildfire areas. In 2016, 40 such occurrences were recorded. In Colorado, firefighting crews are figuring out the most effective ways to use authorized unmanned aerial systems (UAS) to aid fire suppression tactics. When used in an official capacity, drones can be extremely useful. They can be used to survey landscape during a lightning storm when manned aircraft are grounded, or they can be used to deliver supplies to ground crews working in remote areas. Further, with new infrared technology, drones can be used to essentially automate the response protocol process to identify fires with the greatest threat potential, and dispatch the necessary resources before the fires explode out of control. Other leading-edge UAS applications for firefighters include drones that can be pre-programmed with Google Maps flight plans prior to launch, or drones that can stay in the air for hours with greater line-of-sight communications than ever before. The true difference between unauthorized and authorized UAS in wildfire fighting situations is the communication capabilities. When deployed correctly, authorized UAS can use TDMA technology to communicate with other aircraft in the area and ensure that no collisions or interference incidents occur. TDMA is a frequency channel access technique for shared communication networks, essentially enabling a more sophisticated way to drive Point-to-Multipoint communications. It allows multiple transceivers to access and share a single radio frequency channel without interference by dividing the signal into different transmission time slots. This enables swarming applications that enable multiple unmanned systems to operate autonomously, in tandem. For many personal drone users, the temptation to use this emerging technology to capture images or video is strong. Better cameras, greater operating distances and stronger communication capabilities have created a tool that can be both fun and useful for the average user. However, for wildland firefighters, the use of these unauthorized drones pose a serious threat to both their safety and the safety of the civilians they are tasked with protecting.

Manufacturing Change through Big Data, Predictive Maintenance & Remote Access

Although the manufacturing industry has seen some troubling times over the past few decades, new technologies are helping it make a resurgence. So what has manufactured this change, you might ask? The rise of automation and robotics across many sectors, and perhaps one of the most significant industrial impacts since the assembly line was created – the Internet of Things. IoT has given rise to advancements in sensor technologies and M2M (machine-to-machine) communications, along with edge computing analytics and business intelligence from big data. These new methods are fundamentally changing the way goods are designed and produced. We recently wrote a blog highlighting some of these impacts and challenges that coming along with it. Below, however, we’ve gathered a handful of recent industry news articles for you to explore and learn how the industrial IoT is changing the manufacturing landscape as we know it. The Hunt for Zero Defective Parts Per Million When it comes to highly scrutinized and regulated industries, automotive manufacturing is near the top of the list. Understandably, then, automotive manufacturers are quite keen on the pursuit of zero Defective Parts Per Million (DPPM). This recent article from Manufacturing Business Technology discusses the driving forces behind this movement, namely the advent of autonomous vehicle technology. While on-vehicle computer systems of the past may have controlled entertainment or emissions systems, in the near future almost every vehicle system will rely on a piece of silicon in one way or another. With the stakes higher than ever, the advanced capabilities of the IIoT are coming into play to drive manufacturing processes. Moving Outside the Plant: Remote Access Is Quickly Evolving Just a handful of years ago, remote access technology was not a standard. However, as noted in this article from Automation World, a recent survey discovered that 72% of respondents are using remote access to monitor plant equipment and data. While the usage of remote access does vary by industry, the growth in this segment of the IIoT has been strong and shows no signs of slowing — and the applications for remote access are diverse. As Matt Wells, GM of Automation Software for GE Digital said, ““Anyone dealing with distributed fleets has a strong demand to be able to see, manage or control it from a remote spot,” he explains. “It all comes down to the difficulty of accessing that remote asset.” Big Data and Shale 2.0 As oil prices seem to have stabilized (for now) at a lower new norm, oil companies are having to get creative to keep margins healthy and profits rising. One of the ways companies are accomplishing this is through Big Data and the IIoT. This article from E&P Magazine highlights some of the challenges and hesitancies that are emerging within the industry, often fueled by cultural difficulties. However, Mark Slaughter — longtime Halliburton employee and current venture capital advisor — believes in just 10 years, smart analytics will give oil companies the ability to produce the most economic barrel of oil. Preventing Machine Failures through A.I. Automotive recalls are a massive expense for car manufacturers, not to mention the significant public relations disaster that can arise. In an effort to avoid this expensive and unseemly events, automotive companies are turning towards next-gen analytics and automation technologies to help prevent this issues before they become widespread problems. This article from IT Brief states that a recent McKinsey study shows that predictive maintenance could save global businesses an incredible $630 billion a year by 2025. In a world where recalls are pricey PR nightmares, this is music to automotive manufacturers ears. The IIoT’s Role in Product as a Service and Predictive Maintenance Models This recent article from Plant Services explores how the IIoT is changing the way equipment manufacturers and service providers approach their business, particularly through Product-as-a-Service (PaaS) and Predictive Maintenance (PdM). PaaS is the idea of charging for the output of a piece of equipment, rather than an upfront fee for the equipment itself. For example, the volume of compressed air generated by an air compressor. With PdM, advanced analytics are used to monitor the various systems in a piece of equipment, and diagnose and fix potential issues before they become larger (and more expensive ones). As the IIoT continues to grow, and more applications become mainstream, it will be interesting to see how manufacturing processes adapt and change. What new manufacturing promise do you think the IIoT holds? Where industry do you see IIoT gaining a foothold in next?

International IIoT Perspectives: Smart Cities

The Industrial Internet of Things (IIoT) is, at times, hard to pin down. The stronger the technology has gotten, the broader the applications have become, affecting everything from energy, to smart cities to manufacturing, and in the process, blurring the line between traditional consumer and industrial markets. Interestingly, in the United States, much of the Industrial IoT advancements have come from the private sector – oil and gas, utilities, precision agriculture, etc. International IIoT, however, has seen real advancements coming from cities – smart cities, that is. Smartest Cities in the World A 2015 article from Forbes provided a list of the top five smartest cities in the world based on a number of factors, including environmental monitoring, smart traffic management, data usage and creative tech applications.  Barcelona topped the list, with New York City, London, Nice (France), and Singapore rounding out the top five. In each instance, the use of smart technology improved quality of life, efficiency, and better overall functionality. Of course, there are myriad factors to consider when evaluating a city’s “smartness,” but considering how many moving parts – literally and figuratively – that it takes to create a smart infrastructure, the breadth of application is impressive. Barcelona’s comprehensive wired network drives an infrastructure that is constantly aggregating, transmitting and analyzing data for all kinds of things: The boxes are no regular electricity meters. They are fine-tuned computer systems, capable of measuring noise, traffic, pollution, crowds, even the number of selfies posted from the street. They are the future of Barcelona, and in some sense they are the future for all of us too. The hard drives are just one piece of what is “unusual” on this street, in fact. Cast your eyes down, and you might spot the digital chips plugged into garbage containers, or the soda-can-size sensors rammed into the asphalt under the parking spaces. The paragraph above not only highlights the often hidden aspects of smart cities – sensors, hard drives, boxes – but also the sheer magnitude of the data being collected from wherever possible. The technology that powers that data collection lies in the actual communication networks, which are powered by an array of RF, cellular and WiFi connections. Today, many of the devices that are responsible for collecting the data from the source – the access layer – are capable of hosting third-party, proprietary applications that can filter and transmit data in specific packages, turning Big Data into Smart Data. Lately, London has focused on green energy and environmental progress. The city launched an initiative to become a zero-emission city by 2050 with a combination of electric vehicles and public transportation. Sounds familiar, right? The actual mechanisms driving that initiative are not necessarily ground breaking: reduce combustion engines on the road, encourage people to use public transport. However, the technology has finally started to catch up. With smart traffic monitoring capabilities, public transportation can run more efficiently, keeping to strict schedules. Additionally, driverless vehicles can perhaps help lead a transportation infrastructure devoid of human-caused accidents, opening the road systems and, again, leading to greater efficiency. Smart Cities, Smart World Of course, the two examples above come at a high level. There are significant technologies driving the actual implementation of smart city devices, but the key factor is that the leaders of the respective cities understand the need for a stronger, smarter infrastructure. Many other cities are catching up – India often pops up with smart city initiatives, which is a fascinating case study based on the economic disparity of the country. Still, the drivers of the international IIoT goals often point to the development of smart cities as an ideal outcome based on the continued growth of connected technology.

7 Tips for OEMs to Improve SCADA Networking Communications

From remote field sensors to Supervisory Control and Data Acquisition (SCADA) and I/O modules, industrial wireless radios connect your device and sensor ecosystems with robust and reliable links. Furthermore, wireless data radio networking technology connected to I/O modules for SCADA applications have become faster, smarter and their firmware now easier to upgrade. More options and frequencies, including 2.4 GHz for short range I/O and 900MHz for long range data networking, continue to improve SCADA-based network communications for robotics, industrial automation, unmanned systems and heavy machinery. So what do Original Equipment Manufacturers (OEMs) need to know when deciding upon which technology to use? Below are seven tips for OEMs to consider when reviewing industrial wireless communication options.       1) Assess Technology Options for the SCADA Network Start first by identifying your needs, goals, and limitations. When it’s time to research technology options, observe what’s available today and what’s going to be available in the future, heeding the “buyer beware” saying. Communication products vary in many ways, and each manufacturer and/or technology has advantages and disadvantages. No single product—and likely not a single manufacturer—can meet all application needs. 2) Reduce Costs While some companies seek to continue to preserve existing investments of wired and wireless technologies, wireless options have clear advantages for SCADA systems. Most obviously, wireless installations reduce labor and material costs by avoiding hard-wiring remote assets. Speed of deployment adds savings. Wired systems can take days or weeks to be properly installed. Wireless networks generally require only the end points to be installed, saving substantial time and costs. Networks need to scale gracefully as the number of end points increases. After installation savings, scalability is the biggest advantage of wireless over hard-wiring, including slow integration into wired systems as it’s implemented. 3) Consider Hybrid Benefits Toss out any old perceptions. If you need mobile SCADA network access, find somebody that offers it. If you have a microwave tower place, use it. Piggyback slower licensed radio networks with faster 902-928 MHz frequency hopping, AES encrypted networks. Know that you can install I/O capable radios (analog and digital signal, 4 to 20 and 1 to 5) to relay contact closures or other data without adding a new Progammable Logic Controllder (PLC) or Remote Terminal Unit (RTU). 4) Maximize SCADA System Value With telemetry technologies, such as spread spectrum radios, the same radio used in RTUs can act as a slave device sending data back to the SCADA host, and as a repeater to other field devices or other RTUs. This allows almost limitless network expansion by using remote sites as a series of repeaters, and by using radios in the RTUs to poll the instrumentation. Polling the instrumentation creates a second network reporting wirelessly back to the RTU. This shorthaul network is the equivalent of a local area network (LAN). 5) Don’t Use a Proprietary SCADA System By using a non-proprietary SCADA system, users gain real-time access, control, and monitoring of their network (including all the devices and functions of their network). They can manage requirements of an ever-growing system allowing them to manage their network in real-time with fewer bodies and hours invested. Security and safety improves with better monitoring. For instance, some industrial systems don’t contain a process for monitoring the cathodic integrity for corrosion (like in water/wastewater and oil and gas) to avoid disaster. But with deployment of a wireless system, they can. They can begin by monitoring simple things, such as pump stations at wells, using I/O radios communicating back to the central SCADA system to get up-to-date information on the tanks’ or pipelines’ status. End users can more quickly resolve an emergency wirelessly, instead of manually. 6) Seek SCADA System Flexibility Advanced flexibility of radio communications offers benefits to new SCADA system deployments and upgrades performance of existing SCADA systems. For example, in water/wastewater industrial applications, there need to be generation/distribution, lift stations, system monitoring, and treatment facility systems in place (or planned) to meet the expanding growth of a community’s population and/or service areas to meet future requirements. Each year, many industries deploy more frequency hopping spread spectrum (FHSS) SCADA solutions to help monitor and manage critical infrastructure. Several manufacturers (including FreeWave Technologies) offer FHSS radios capable of retrieving data from remote locations. And although wireless IO (input/output) has been available, only recently have both capabilities been offered in one communication solution. 7) Seek Easy-to-Use SCADA Software OEMs implementing and using a SCADA network systems for data communications want a simplified, rapid setup and easy management of a network. That includes ability to manage multiple frequencies and multiple networks within one system. A centralized storage and management center provides easy access to system configuration and diagnostics data. Technicians in remote or harsh weather environments need robust reporting capabilities. Software like FreeWave’s ToolSuite can manage data communication diagnostics and configuration.

Utilities & IIoT: The ‘Perfect Storm’ Meets the Revolution

In early 2017, John Kennedy at SiliconRepublic declared the Industrial Internet of Things (IIoT) the ‘perfect storm’ – a convergence of technologies with the capacity to create new economic benefits based on operational efficiency. On these blog pages, we’ve covered many different facets of industries adopting intelligent communication technologies likes sensors, programmable radios, and powerful analytics tools, but one industry in particular seems poised for the greatest upheaval: utilities. Many industry experts are pointing at utility markets as poised for revolution.  So, what happens when the ‘perfect storm’ meets the revolution? Critical Infrastructure Transformation Given the way the human population is dispersed in the United States (and abroad), cities play a huge role in driving the growth of IIoT technologies in utilities. Water and wastewater treatment plants are perhaps one of the most important (and overlooked) pieces to modern infrastructure. Without these plants, after 1-2 uses, most of the water in North America would be unusable. Instead, companies are using sensors and other connected monitoring devices to create smart data that informs decision making, eliminates variables, and improves effective responsiveness. Similarly, the electric grid has seen significant transformation as well. In the era of the smart grid, we now have the ability to monitor grid activity more closely, deploy electricity more efficiently based on usage spikes, and allow consumers to track their own energy usage. The residual effect of this tracking is, perhaps, an increased awareness of how we use energy on a daily basis and could lead to better individual conservation efforts. Alternative Energy On The Rise And speaking of conservation efforts, with the ability to use energy more efficiently, alternative energy has exploded as viable alternatives to our traditional resources. Wind power has grown into a consistent source of energy, but for years, operators needed a better way to monitor the energy systems. Today, IIoT technology not only allows better monitoring, but provides real-time management capabilities for operators. The name of the game is efficiency, and if the operations are efficient, then the usage can be efficient as well. Business Convergence Since utility companies are now better equipped to understand when and how resources are being used or deployed, they can streamline some of the day-to-day operations by building a network of smaller solutions that are specifically designed to meet niche needs, creating more business opportunities for both traditional and alternative utility providers. Although many doomsday scenarios point to increased automation as the death of the worker, with a greater diversity of solutions, the economic impact might actually provide more jobs instead of fewer. Relying on the traditional model of the last half-century, however, does not. Ultimately, we are still looking at an industry that is right on the cusp of revolution. Utilities have, historically, been slightly slower to respond to technology overhauls at a high level, but with the added efficiency and financial benefits that accompany IIoT adoption, companies are rethinking old strategies and pushing into a new frontier – confronting the ‘perfect storm’ head-on to ensure the best possible landscape once the dust settles.

IIoT News Headlines: Trains, Agriculture, Underwater and More

IIoT News Trains

Industries around the world are being transformed by the Industrial IoT. We recently shared a blog with a report that estimates IIoT will experience explosive growth and approach one trillion dollars by 2025. From trains and under water applications, to agriculture, we are already seeing IIoT expand its reach today. However, we continue to see security as one of the biggest challenges – which continues to top news headlines. Below are some of the recent IIoT stories that have caught our attention: How Siemens Is Using Big Data And IoT To Build The Internet Of Trains By: @BernardMarr | Published on: @Forbes  “Siemens AG is one of the world’s largest providers of railway infrastructure, serving rail operators in over 60 countries. Through harnessing Big Data, sensors and predictive analytics they say they can now guarantee their customers close to 100% reliabilit It calls this the “Internet of Trains” – the on-rails segment of the wider ‘Internet of Things’ concept which describes how everyday objects of all shapes and sizes can now be connected together online and given the ability to communicate and capture data for analytic purposes.” Agriculture Is The No. 1 Opportunity For African Internet Of Things, Security The No. 1 Challenge  By Tom Jackson | Published on: @AFKInsider “Agriculture, Africa’s largest economic sector, is likely to be central to the growth of IoT. There are many examples around the world where value can be unlocked from enhanced efficiencies along the value chain. Mining, oil and gas, telecommunications and manufacturing will have to adopt IoT to improve efficiencies.”   The Internet of Underwater Things Published on: @NauticExpo_eMag “The development of an Internet of Underwater Things (IoUT), transmitting data throughout the ocean could make possible a system of roaming, autonomous vehicles and underwater sensors, all communicating with each other and relaying information to networks above the surface. This could be used for a wide range of submarine tasks, from pipeline repair and shipwreck surveys to seismic detection and ecological monitoring.”  IIoT and The Cyberthreat: The Perfect Storm of Risk By: @ChrisGrove_Geek | Published on: @MBTwebsite “Many of these newfound risks did not previously exist, mostly due to the lack of interconnectivity and the network ‘air-gap’ — which has become a thing of the past. As industrial organizations race to keep up with advances in manufacturing technologies, IT is increasingly encroaching into the OT world. It’s no longer uncommon to find IT technologies like Ethernet, Wi-Fi, the Cloud and cybersecurity products like virus scanners, firewalls, Intrusion Detection/Prevention Systems and Security Information/Event Management (SIEM) products being managed outside the purview of IT.”   It will be interesting to see how the IIoT continues to transform industries. What are some of the interesting use cases you are seeing as the IIoT growes? What are your biggest security concerns when it comes to IIoT?  

Industrially Hardened Time Keeping

Today, a wide variety of industries with outdoor OT assets require technology that can connect the assets to a modern communication network. Depending on the application, the solution is not always as simple as slapping on a cellular or standard WiFi solution. For one, many industries have assets located in remote locations where cellular coverage is limited and long range communication is required. The OT network must also be highly secure and have the ability to avoid interference. Additionally, any outdoor communication network is subject to weather and natural elements. The best hope for maintaining reliable, secure, real-time connectivity is with a solution that is ruggedized, industrially hardened and proven to work in the most extreme environments. Recently we talked about wireless communication solutions used in Antarctica, that are performing under some of the most extreme conditions in the planet. These Frequency Hopping Spread Spectrum (FHSS)-based technologies are built to last and perform with a secure connection. Did you know that the same solutions have also made their way into the sport of boat racing? When November rolls around each year, rowing enthusiasts gather in Chatanooga, Tenn. For the Head of the Hooch race. A total length of 5,000 meters, it is one of the largest and fastest growing regattas in the U.S. Each year more than 2,000 boats race over the course of two days.  Participants come in from all over the U.S. and the event has hosted international teams from Canada, Germany, Sweden and Australia. Real-Time Accuracy The race is organized by the Atlanta Rowing Club. In the early days, organizers relied upon stopwatches for keeping time. As the race grew and more boats participated, the manual method of time keeping was no longer feasible. Organizers needed a time keeping solution with a link strong enough to deliver race results in real-time in any weather condition. Organizers selected an industrially hardened wireless communication solution and used it in conjunction with a timing system built for downhill skiing races. The system offers precise timing accuracy – down to 1/10th second for each boat. The wireless solution uses FHSS technology that is typically used in utility-scale Industrial IoT (IIoT) applications. These types of solutions have been used for monitoring and control of outdoor assets in the utility industries for decades and have proven to ensure accurate, real-time connectivity in harsh, remote locations. Not only is the “hopping” nature of FHSS inherently secure, but there are solutions with AES-encryption and other advanced security features to further secure the network. The solutions also offer a range of 60 miles Line-of-Site (LOS), and have proven to be ideal for the Head of the Hooch race. Over the years, races have been conducted in cold, rainy, cloudy and/or windy weather, and the solution has reliably performed in all whether conditions present during the race. Rugged, industrially hardened communication solutions that are well known in the oil/gas and utilities markets – aren’t always the initial choice for connecting non-industrial outdoor networks. In some cases, decision makers in these markets may simply be unfamiliar with the benefits of FHSS. What they need to know is that FHSS solutions have been trusted for years to provide long-range, real-time connectivity, and they are often ideal for a variety of use cases outside of industrial markets. Read the full Head of the Hooch case study here: https://www.freewave.com/case-studies/head-of-the-hooch/

IIoT Top News — Security Remains Top of Mind

Cybersecurity has been top of mind for industry experts and consumers alike. The WannaCry ransomware is putting a legitimate scare into affected companies, although many are apparently preparing to call the hackers’ bluff. Yesterday, another cyberattack was announced as well, and it has the potential to be far more lucrative for the developers. The common denominator between the two? A leaked exploit developed by the NSA that leverages a Windows file-sharing protocol. These attacks are indicative of the long-term game of cat and mouse that the government and private enterprise faces for the foreseeable future of security and counterintelligence. Moving forward, the growing network of connected devices for the Industrial Internet of Things (IIoT) faces similar security threats. This week, we found several stories demonstrating some of the solutions surrounding those potential security issues. The 9 Best Practices for IIoT from a Dell Security Expert   At a recent presentation for 2017 Dell EMC World Conference, Rohan Kotian, Dell EMC’s senior product manager for IoT security, spoke about his nine best practices for improved IIoT security. His number one strategy? Simply understanding the concerns. Many IoT devices come out of the box with few security controls in place, and understanding the risk is the most important step in addressing them. In this article from Tech Republic, you can read Mr. Kotian’s other nine best practices, including studying the attack trends, classifying risk, and leveraging fog computing.   IIoT Market Expected to Approach One Trillion Dollars by 2025   Grand View Research writes that the industrial Internet of Things will experience explosive growth over the next decade, going from a $109 billion industry in 2016 to an expected $933.62 billion by 2025. The massive market increase will be driven by a number of factors, one of which continued investment by government agencies and corporate leaders. As the report states, “The role of the Internet of Things (IoT) is increasingly becoming more prominent in enabling easy access to devices and machines. Government-sponsored initiatives and innovative efforts made by key companies, such as Huawei, GE, and Cisco, are anticipated to enhance the adoption of IIoT worldwide over the forecast period.”   IIoT Presents Unique Security Challenges Security is always a top priority in the Internet of Things, but IIoT applications present unique challenges. In this article from CSO Online, Phil Neray, CyberX’s vice president of industrial cybersecurity, writes that despite the growth of IoT applications in oil, gas, electric, and pharmaceuticals, “The fact is that all of these devices were designed a long time ago.” That means IIoT innovators have the challenge of integrating the newest technology into systems that may be decades old. This sort of retrofitting can make security a real challenge and there are few experts available who have both the knowledge of legacy systems and the latest IIoT solutions.   Sprint to Deploy LTW Cat 1 by End Of July   The Internet of Things relies heavily on low-power communication protocols to perform, so a recent announcement on FierceWireless.com that Sprint will be releasing LTE Cat 1 by the end of July is music to IoT developer’s ears. LTE Cat 1 is designed to support low-power applications on the Sprint network such as vehicle telematics and industrial IoT applications. “As one of the leading enablers and solution providers of the internet of things, Ericsson believes in its power to transform industries and capture new growth,” said Glenn Laxdal, head of Network Products for Ericsson North America. “Ericsson looks forward to partnering with Sprint to deploy Cat M1 next year and bring the transformative power of IoT to the Sprint Nationwide network.” The announcement also noted that Cat M would be following in mid-2018. TE Cat M1 and LTE Cat NB1 will support other applications requiring ultralow-throughput and power consumption.

Do You Speak the Languages of Industrial IoT?

There is an ongoing transition from a world where having an internet connection was sufficient, to a world where ubiquitous connectivity is quickly becoming the norm. The ability to gather and transport data at high speeds from anywhere is leading to increased automation, smart-everything (vehicles, homes, appliances – you name it), and a standardization of languages and protocols that make the possibilities nearly endless. Recently, IEEE and Eclipse Foundation completed surveys that provided a snapshot on tools, platforms and solutions being used by engineers and programmers alike to build the Internet of Things. According to Joe McKendrick for RTInsights.com, there were several notable conclusions to be drawn from the results, including the revelation that, of the 713 tech professionals surveyed, nearly 42 percent said their companies currently deploy an IoT solution, and 32 percent said they will be deploying/working with an IoT solution over the next 18 months. Additionally, RT Insights writes: “In terms of areas of concentration, 42% report they are working with IoT-ready middleware, while 41% are concentrating on home automation solutions. Another 36% are working with industrial automation as part of their IoT efforts. One-third are working on IoT for smart cities, and the same number are building smart energy solutions.” An interesting note from those conclusions is that 36 percent are working with industrial automation as part of their IoT efforts. Earlier this year, we predicted that Industrial IoT (IIoT) app development would outpace consumer IoT apps, and although this sample size is somewhat limited, it still bodes well for the development of the IIoT sector that is just starting to come into its own. Among IoT developers, there has been a bit of debate over the programming languages that best suit IoT apps. There are situationally appropriate uses for the main languages, but currently, the majority of developers prefer Java and the C language. For developers, being able to build out IoT apps that can work across platforms is a giant step toward standardization. Specifically, in the Industrial IoT, being able to build apps that can function at the Edge to enable smart data collection is a becoming an unofficial mandate for any companies hoping to transition legacy OT operations into the IT/OT convergence movement taking place across critical industries. Of course, building apps is a meaningless task if the hardware being deployed can’t host those apps, a finding that was demonstrated by the survey: Hardware associated with IoT implementations include sensors, used at 87% of sites, along with actuators (51%), gateways and hub devices (50%), and edge node devices (36%). This Edge functionality and sensor deployment are two pieces that are driving the adaption of IoT technology across industries that have traditionally relied on data as the main tool for decision making. However, with smarter hardware, these industries now have the opportunity to improve the efficiency of that decision making – a transformative capability in the industrial realm. Join FreeWave’s ZumLink IPR Pilot Program! What if you could….. Collect, analyze and react to data in real-time at the sensor edge? Reduce BIG DATA that clogs data pipelines? Minimize the cost of expensive PLCs? Control your sensor at the closest touchpoint? The ZumLink IPR App Server Radio combines 900 MHz wireless telemetry with the ability to program and host 3rd party Apps for intelligent control and automation of remote sensors and devices. To participate in the pilot program, visit: https://www.freewave.com/zumlink-ipr-pilot-program/. Pilot Program participants: Receive a complimentary hardware/software Dev Kit Get support from FreeWave software engineers Should have App developer’s skills Let’s discuss: Use cases that would help you or your organization solve a problem Problems you would like to solve Developers that could build this App

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.