An Industrial IoT Anniversary

Wow, what a year! This post marks the one year anniversary of publishing Industrial IoT top news, trends and highlights, and we wanted to dedicate a recap post to our favorite articles throughout the past year. In particular, a lot of attention has been paid to the happenings in precision agriculture, oil and gas, unmanned systems, the smart grid, public utilities, manufacturing, machines and machine learning, fog computing, big data, sensor technology, wireless technology and cybersecurity, to name a few. Read on for the top 10 articles we’ve posted since last August and make sure to see the special bonus at the end! Precision Ag: Big data is precision agriculture’s best tool to feed the world By @LuxResearch | Published on @AgProfessionalhttp://www.agprofessional.com/news/big-data-precision-agriculture%E2%80%99s-best-tool-feed-world“Big data can be the most flexible tool for increasing the efficiency of food production through precision agriculture – a quantified approach to cultivation that uses sensing, input modulation, and data analytics to enhance the efficiency of agriculture.”  Oil and Gas: In the digital oil field, “no wires” is a no-brainerBy Zach Wertenberger @WPXEnergy | Published on @WorldOilhttp://www.worldoil.com/magazine/2015/september-2015/features/in-the-digital-oil-field-no-wires-is-a-no-brainer“Wireless technology plays an integral part in the day-to-day operations of virtually every industry on the planet. However, if you spent your time visiting most of the world’s oil fields, you wouldn’t believe that.Despite being a rather obvious fit with the inherent nature of the oilfield services sector (OFS), wireless I/O has been adopted by producers at a slow pace, with most continuing to rely upon miles and miles of fault-prone wire to connect onsite control centers with wellsite instrumentation.”  Smart Grid: Wireless Lifts Focus on Grid Resiliency By Brad Gilbert @freewavetech | Published on @POWERGRIDmaghttp://www.elp.com/articles/powergrid_international/print/volume-21/issue-6/features/wireless-lifts-focus-on-grid-resiliency.html“Industrial Internet of Things (IIoT) networking technology and wireless Machine-to-Machine (M2M) communications solutions are critical to the daily operations of an increasingly connected and industrial world. With a greater dependence on providing reliable and secure high-speed connectivity to personnel, smart devices, machinery and many other geographically dispersed assets, electric utility operators require powerful, yet flexible, communications solutions for their business demands.”  Utilities: Wastewater Treatment: Out of Sight, Out of Mind (Thanks to IIoT)By Scott Allen @S_Allen_IIoT | Published on @Ulitzerhttp://scottallen.ulitzer.com/node/3527211“Water is a crucial piece of any city’s – or country’s – infrastructure. The United States is fortunate to have some of safest drinking water in the world, for a number of reasons, one of which is its many water and wastewater treatment facilities.”  Manufacturing: Bringing Smart Technology to Old Factories Can Be Industrial-Size ChallengeBy @mcoc | Published on @wsjhttp://www.wsj.com/articles/bringing-smart-technology-to-old-factories-can-be-industrial-size-challenge-1465351322“It’s a tantalizing vision: Bright and shiny factories where robotic arms and conveyors never break down and production goals are never missed—all thanks to internet-connected sensors that monitor machine health and respond to the slightest supply or logistics hiccup.”  Machine Learning: 10 Ways Machine Learning is Revolutionizing ManufacturingBy @LouisColumbus | Published on @Forbeshttp://www.forbes.com/sites/louiscolumbus/2016/06/26/10-ways-machine-learning-is-revolutionizing-manufacturing/#3f10cd992d7f“Machine learning’s core technologies align well with the complex problems manufacturers face daily. From striving to keep supply chains operating efficiently to producing customized, built- to-order products on time, machine learning algorithms have the potential to bring greater predictive accuracy to every phase of production.”  Fog Computing: Why IoT Needs Fog ComputingBy @BanafaAhmed | Published on @bbvaOpenMindhttps://www.bbvaopenmind.com/en/why-iot-needs-fog-computing/“The Internet of Things (IoT) is one of the hottest mega-trends in technology – and for good reason , IoT deals with all the components of what we consider web 3.0 including Big Data Analytics, Cloud Computing and Mobile Computing.”  Sensors: The Army Wants to Implant Body Sensors into Combat SoldiersBy @tjenningsbrown | Published on @vocativehttp://www.vocativ.com/342014/army-body-sensors/“In the near future, American soldiers might all be implanted with a sensor before going to battle.The United States Department of Defense is interested in monitoring the health of soldiers in real-time. But wearable health trackers have faults and limitations. That’s why the Army Research Office and Defense Advanced Research Projects Agency have awarded $7.5 million to San Francisco-based Profusa to develop tissue-integrated health-monitoring sensors for service members.”  Wireless Tech: Industrial Wireless RevolutionBy Soliman A. Al-Walaie @Saudi_Aramco | Published on @ISA_Interchangehttps://www.isa.org/intech/20151001/“Wireless technology is an essential business enabler for the automation world. It has gained rapid acceptance in many industrial sectors because of its cost effectiveness, reliability, fast deployment, and flexibility. Over the past four decades, ultrahigh frequency (UHF) radios have been widely used for long-range supervisory control and data acquisition (SCADA) connectivity in the oil and gas and power and utility sectors.”  Cybersecurity: Navigating Industrial IoT risk and complexityBy @EStarkloff | Published on @AMDMaghttp://www.aerospacemanufacturinganddesign.com/article/amd1015-industrial-iot-complex-systems/“As massive networks of systems come online, they will need to communicate with each other and with the enterprise, often over vast distances. Both the systems and the communications need to be secure or millions of dollars in assets will be put at risk. One example of the need for security is on the smart utility grid, which is on the leading edge of the IIoT.” Bonus! Eliminate the cost of  your next IIoT deployment Now is the time to brave the digital transformation in your industry while you continue to future-proof your systems. All you need to do is submit a use case for your radio network for a chance to win a next generation industrial wireless IoT solution. All entries must be received by August 19th. FreeWave will announce the winner on August 31st chosen based on submission (US and Canada only). The winning network must be deployed by October 31st. In return for the free radio network, the winning candidate will be able to gain additional promotion of their installation and network implementation! Submit here for your chance to win: http://bit.ly/2awdmkC. Learn more about ZumLink.

Where is RF Technology for Oil and Gas Headed?

The entire landscape of the oil and gas industry is changing. Not only has the industry downturn forced operators to rethink their business models, but the RF technology supporting industry operations is quickly changing. It is more important than ever to make intelligent business decisions with the right technology in place. As a decision maker for your organization, you need to be aware of the technology that is pointing towards the future of automation and RF technology. Challenge yourself to think beyond basic command and control and picture a fully connected network – from Sensor-2-Server. Here’s a quick snapshot of the technology movement we are seeing in the oil and gas industry right now: The installed base of wireless Machine-to-Machine (M2M) devices is growing. More technology in the field allows operators to access more data from more sensor access points – on a grander scale than ever before. The ability to leverage Big Data supports intelligent decisions that will optimize business operations and cut down on expenses. The Industrial Internet of Things (IIoT) is the future of communication technology. With IIoT, data can be transported from its collection point to wherever it needs to go – anywhere in the network. This has sparked a convergence of OT and IT operations, driving RF technology networks closer to the concept of complete connectivity. With a fully connected network, decisions are made based on comprehensive data, which drives intelligent problem-solving. With that type of insight, you could better disperse your resources, leaving a positive impact on the organization for years to come. Sensor-2-Server (S2S) solutions that deliver intelligence to the access layer are critical to industry success. S2S solutions bring intelligence to the access layer, enabling edge devices to do more than simply transmit data. They support highly detailed data analysis such as predictive analytics. Imagine the operational decisions you could make with a complete set of data from the outermost edge of your network all the way back to the server. IoT App development is the next big thing. Programmable third-party applications are on the horizon of the wireless RF solutions market. These apps will support machine learning, distributed intelligence, predictive maintenance, and more at the edge of the network. Technology is being designed to enable these applications – which have the potential to lead the industry to the next frontier of RF technology.

IoT Top News: Distribution Intelligence

According to the U.S. Department of Energy, distribution intelligence refers to the part of the smart grid that addresses utility distribution systems – meaning the wires, switches and transformers connecting the utility substation to both the utility company and the end customer. These systems are designed to drastically improve the demand response times and overall efficiency of transferring electric power, thus enabling a fully controllable and flexible distribution system and giving field technicians the actionable knowledge to troubleshoot problem areas faster. As utility providers continue to move towards a digital and connected enterprise, the prospect of a self-healing power distribution system becomes extremely valuable – especially as electric power consumption continues to rise globally. That’s way this week’s round up is dedicated to distributing intelligence across one of the most mission-critical infrastructures on the planet – the power grid. State of Distribution Intelligence, per a Recent Smart Grid Report A smart grid survey of 70 U.S electric cooperatives found that, regardless of the challenges most have found a way to start incorporating smart grid technology across the board. Zpryme and the Rural Smart Grid Summit (RSGS) report that, “Nearly all electric cooperatives have some sort of smart grid effort. Many are at thestage of deploying multiple applications (31%) up from 21% last year. Pilot projects are also growing from 8% last year to 16% this year.”   We Now Have Hourly Data on the US Power Distribution System The U.S. Energy Information Administration (US EIA) can now collect data on electric supply, demand and flows on an hourly basis. CleanTechnica informs us that, “EIA’s U.S. Electric System Operating Data tool provides nearly real-time demand data, plus analysis and visualizations of hourly, daily, and weekly electricity supply and demand on a national and regional level for all of the 66 electric system balancing authoritiesthat make up the U.S. electric grid.”   Distribution Intelligence Starts with Proper Training India’s National Smart Grid Mission (NSGM) with USAID announced they will begin a series of utility personnel training programs designed to help educate workers on smart grid functionality and design. The Business Standard revealed, “The government has taken several proactive steps towards grid modernization, including the establishment of a Smart Grid Mission to plan and monitor the implementation of policies and programs related to Smart Grid activities in India.”   Cyber Attack Vulnerability in the Power Grid? We have all heard about a few of the big cyber attacks that have affected some big companies, but many don’t realize an attack on the electrical infrastructure could be crippling to our society. The Energy Collective unveiled a quiz to dispel some myths about the state of cybersecurity in the power grid. “Minimizing the risk is not just about training a network IT team. It’s about running a comprehensive and continuous scan of operational technology (OT)—the programmable logic controllers, the mobile devices, the supervisory control and data acquisition systems (SCADA), etc.—and then coordinating OT and IT teams with risk officers and crisis management experts to form a cohesive front capable of responding to an industrial cyber incident.” Perhaps the notion of distribution intelligence systems can help address and alleviate some of these concerns.   Most utilities are only starting on the road to true distribution intelligence, but the market is expected to boom in the coming years. With the advent of industrial IoT technologies and new regulatory factors, we could realize distribution intelligence in our power grid sooner than later. I hope you have enjoyed our weekly round up on distribution intelligence, and please be sure to leave your comments and questions below. BONUS ARTICLE The round up above is all about the smart grid and how to make it more efficient and resilient. Ever hear of a smart city? Smart cities are connected cities, and they work in conjunction with everything from IoT sensors to open data collection and smart streetlights to provide better services and better communication. Teena Maddox from Tech Republic wrote a great round up piece on six essential technologies that make the smart city of the future a reality today. Give it a read!  

The Next 30 Years of IT

At Interop Las Vegas back in May, InformationWeek Executive Editor Curtis Franklin sat down with Senior Editor Sara Peters about how IoT is changing everything we know in IT, especially in the industrial enterprise. From predictive analytics, to security, to ROI, see why Franklin and Peters view the next 30 years of IT starts with IoT. Here are some key trends and considerations worth noting: We’re starting to see a clear division between the consumer and industrial markets as far as the evolution of IoT. The Industrial IoT (IIoT) space looks to be growing, developing and maturing at a faster rate than the consumer IoT space. The concept of predictive maintenance and advanced analytics is where a lot of innovation and excitement is happening for a few reasons: The end-to-end enterprise IT toolchain is now being viewed holistically, looking at how data and information travels from the sensors at the edge of the network, through the different networking and communication modalities and all the way back to the big data analytics engines at the core network (further reading: Sensor-2-Server). As a result of the new intelligence and operational efficiencies that are being realized, companies are seeing hard dollar returns which provide the capital to make new investments in these emerging technologies Security is a legitimate concern and while the pace of innovation might be slowing the adoption or rollout of new IoT technologies, vendors and service providers recognize the importance of the security paradigm and are building encryption and authentication into their systems. Interoperability of networks – are they being taken for granted? Perhaps there is even more on the horizon as far as how different technologies and networks integrate. The progression of new RF standards has been slower than most expected; will it pickup from here? The answer is most definitely and through ubiquitous networking and other advancements with RF and digital engineering, we will see innovations in the application layer of networks over the next five years that we can only dream about today.  

Berg Insight: Bright Days Ahead For Wireless Automation

A recent report published by Berg Insight details the bright future ahead for Industrial IoT through the implementation of wireless automation technologies. Berg Insight senior analyst Johan Svanberg made note that higher levels of automation and IoT solutions enable “shorter lead times, lower inventories, increased throughput as well as more flexibility and the ability to respond faster to changing customer needs.” The wireless IoT device market is served by a multitude of players from various backgrounds including global automation solution providers, automation equipment and solution vendors, industrial communication specialists and IoT communication specialists. This new report from Berg Insight informs us that: 2015 estimate of wireless devices for industrial automation applications reached 4.8 million units worldwide. Wireless devices installed for industrial applications have a forecasted growth rate of 27.7 percent from 14.3 million connections at the end of 2015 to 62.0 million devices by 2021. Key Findings from Berg Insight: Wireless connectivity is instrumental in the Internet of Things era and the use of wireless solutions in industrial automation is increasing rapidly at all levels of automation systems. Industrial automation systems utilize wireless communication to connect remote and local facilities and equipment to increase operational efficiency. A wireless automation system contains a mix of network technologies, equipment and systems including enterprise and automation systems, network equipment, control devices and field devices. The most common wireless technologies in industrial automation include cellular, 802.11.x Wi-Fi, proprietary unlicensed ISM radio, Bluetooth, various LPWAN technologies and 802.15.4 based protocols such as WirelessHART, ISA100.11a and ZigBee. Berg Insight estimates that shipments of wireless devices for industrial automation applications, including both network and automation equipment, reached 4.8 million units worldwide in 2015. Growing at a compound annual growth rate of 25.1 percent, shipments are expected to reach 18.3 million by 2021. The installed base of wireless devices in industrial applications is forecasted to grow at a compound annual growth rate of 27.7 percent from 14.3 million connections at the end of 2015 to 62.0 million devices by 2021. Wi-Fi is widely used for backbone communications as well as in monitoring and control applications within factory automation where Industrial Ethernet has got a strong foothold. Bluetooth is also popular – often as a point-to-point wire-replacement between for example a mobile HMI solution and a field device or control unit. 802.15.4 networks are often used to connect wireless sensors and instrumentation in process automation. Cellular connectivity is typically used for backhaul communication between plants, connecting remote devices in long haul SCADA applications and for third party access to machinery and robots. LPWAN technologies are increasingly used in certain low data, long range applications. Most of the major vendors of wireless IoT devices in industrial automation offer a wide range of devices with various wireless technologies in order to support many different applications. Key Takeaways, According to Berg Insight: Companies are now deepening the integration between industrial automation systems and enterprise applications and the promise of IoT is getting more tangible by the day. Large multinational corporations are beginning to systematically develop and adopt best practices to maximise the benefits of IoT technology in every part of their organisations. IT/OT convergence, smart factories, Industry 4.0 and the Industrial Internet of Things are concepts which are part of the ongoing evolution of industrial automation. Innovation in sensors, wireless connectivity, collaborative robots, big data and cloud solutions along with seamless exchange of information between devices, systems and people paves the way for improved performance, flexibility and responsiveness throughout the enterprise value chain. For more information, read the full report from Berg Insight.

IIoT Top News: Machine Learning

Machine-to-machine (M2M) learning is an integral apart of the expanding world of Industrial IoT. Over the past few months we have given attention to manufacturing and its current digital disruption, but have failed to show the direct impact smart M2M and IoT technology is having on the industry. So, this week we are diving deeper into the term machine learning and how it connects to manufacturing both today and in the future. Before we get to our news round up let’s start by re-defining M2M, to ensure we are all on the same page with its purpose and meaning. Gartner has defined machine-2-machine communications as “something used for automated data transmission and measurement between mechanical or electronic devices.” Now, that we have defined M2M, its time to check out our top news round up for the week on how M2M applies to both manufacturing and IoT. 10 ways machine learning is revolutionizing manufacturing Machine learning is poised to improve manufacturing by streamlining the process of OT and IT, thus increasing efficiency and lowering overall operation costs. Louis Columbus at Forbes believes that “Every manufacturer has the potential to integrate machine learning into their operations and become more competitive by gaining predictive insights into production.”   IoT will recharge Machine Manufacturers Manufacturing can look to software companies as an example of how IoT can implement creating a smarter M2M network. Timothy Chou with CFO.com writes, “Today, manufacturers of machines — whether seed drills, chillers, or CT scanners — can leverage the path paved by the software product companies through three new business models: service and support; assisted services and machine-as-a-service.”   Climbing the IoT Mountain–by adding M2M to manufacturing Manufacturing is only at the beginning of its ascent into IoT and M2M, so there are many more bumps and obstacles a long the way for the industry to fully integrate. Ronnie Garrett with Supply & Demand Chain Executive describes IoT and M2M manufacturing implementation as, “Standing at the foot of Mount Everest, ready to climb the world’s tallest mountain. You know you want to get to the top but you aren’t really sure how you will get there or what obstacles you’ll encounter along the way.”   Cybersecurity is manufacturing’s biggest risk factor Manufacturing needs to continue to add M2M automation and big data analytics to the shop floor, but a threat to the overall industry is manifesting itself in the cybersecurity world. Ian Wright with Engineering.com informs writes, “A new report from BDO indicates that 92 percent of manufacturers cited cybersecurity concerns in their SEC disclosures this year. According to BDO, this represents a 44 percent increase compared to the first Manufacturing Risk Factor report in 2013.”   As we wrap up our top news for the week, we realize the need to fully implement advanced machine learning across the manufacturing world will take more than a simple flick of the wrist. With that said, we leave you with a cautionary tale of when automation goes wrong. It was recently discovered an airport in India had an sign translated with automation software which read, “eating carpet strictly prohibited” — of course this was not the translation they had meant to display. Regardless, as we move towards a fully integrated M2M world, we will have to adjust our equations depending our our intended outcome, much like the world is finding with the love/hate of language automation. Hope you have enjoyed this week’s top news, as always tell us your thoughts on M2M and how it might impact your world!

IoT Top News: Manufacturing Disruption

Industrial IoT continues to cause disruption; not just in manufacturing, but across many other industries as well. In the last few months we’ve been keeping a pulse on the state of digital transformation across the business landscape and have been discovering exciting new implementations of Industrial Internet of Things (IIoT). This week we’re highlighting the disruption Industrial IoT is instigating as product development and lifecycle management continues to evolve. Overcoming Three Key Barriers to Industrial IoT Industrial IoT has the potential to capture data in real-time, leverage big data analytics and streamline efficiency to name a few. So what’s hold back the industry? A major barrier has to do with culture of the operational technology (OT) organizations within the industry. The OT have a risk-averse way of thinking and see change as disruption, “Whereas IT is defined by constant change and innovation, that’s why it’s not unusual to see industrial automation systems in service for decades at a time with little or no change.”   Bringing Smart Technology to Old Factories Can be an Industrial-Sized Disruption It sounds amazing to have robotic arms working together with the Industrial IoT. The reality is manufacturing is being disrupted by the implementation of IIoT. Mary Catherine O’Connor with the Wall Street Journal reminds us that, “Often plant managers can’t tell which sensor will most accurately collect the data they want from a machine without a series of test runs—a time-consuming process.”   Product-Development Strategies in the IIoT Disruption The key to succeeding with IIoT disruption will be to focus on the new innovation of both product and software for the industry. Machine Design reminds us that, “IIoT is a disruptive force that will shape product-development trends over the next decade and beyond.”   Relying on CMM to Keep IIoT’s Disruption Positive All the talk up to this point has been about the negative disruptive impacts IIoT is having on the industry. IIoT has the ability to drastically change manufacturing with a positive level of disruption introduced on the shop-floor. According the the American Machinist positive disruption can happen, “By using coordinate measuring machinery (CMM), machine shops or other manufacturers are able to capture the precise details of the geometry or surface conditions of a workplace. Working within IIoT, those manufacturers then are able to share such data between machines, exchange information between facilities, or with customers or suppliers.” Now we would like to leave you with this quick excerpt from Kevin Ashton, a British technology pioneer who co-founded the Auto-ID Center at the Massachusetts Institute of Technology (MIT) and inventor of the term “the Internet of Things.”   How the Internet of Things Disruption Gains Traction – Extreme IoT We hope you have enjoyed this closer look at the disruption Industrial IoT is bringing to the table and what steps are being done to allow more implementation across the industry. Let’s us know what disruption you have seen with IIoT.

IIoT + S2S = Industrial Innovation at the Access Layer

The Industrial Internet of Things (IIoT) is moving at a rapid pace towards a higher intelligence platform to help collect, protect, transport and control data at scale from a myriad of sources. The access layer in the IT landscape is now particularly becoming an innovative technology environment with many new sensory solutions available to bring intelligence back to the core systems and analytics engines. Another area to consider when discussing IIoT are the individuals working with these technologies today, tomorrow and in the future. To start, the younger/millennial generation is entering the workforce in droves and is arguably the first generation open to big data integration and as part of IoT application solutions. Now that IT and Operations personnel work closer together than ever before, there is a need to be able to share the sensor data across the access layer. On the other hand, the older generation is trusting of the SCADA data systems they have been using for years, and are slow at first to adapt to the new intelligence created in the access layer. How Does an Enterprise Address this Transition? One strategy is IT/OT convergence, which promotes a single view of an enterprise’s information. Process-management tools help ensure that every person, machine, sensor, switch and device in an organization has accurate information in the best form and at the right time. As OT products—for example, programmable logic controllers (PLCs) and remote terminal units (RTUs)—become more aligned with IT infrastructure and applications, getting OT information integrated efficiently with IT systems at a process level is difficult enough for many companies. Getting IT and OT systems to work together to maximize business efficiency — while avoiding negative consequences, risks and pitfalls in the process —makes the task more challenging. However, thanks to new technologies, this process is becoming more practical and is creating the opportunities for huge economic benefits when these two disciplines are successfully integrated. Evolution of Sensor-2-Server (S2S)  (As described by Brandon Lewis, Technology Editor for IoT Design) S2S architectures define a method for communicating data collected by sensor platforms at the access layer of an IoT network back to servers at other layers, including but not limited to centralized servers in the core network. This type of architecture allows sensor data to be transmitted to points in the network that are best suited to the specific type of analysis, decision making, and control, which in an industrial deployment could be a SCADA controller located at the aggregation layer rather than a mass dump of heterogeneous data from hundreds or thousands of endpoints back to the core network. For critical IoT systems that require real-time or near-real-time analysis of sensor data, this more localized communications can speed decision cycles using data in motion rather than waiting to parse data at rest. Want to Learn More about S2S and the Future of Industrial IoT? For more information and a full discussion on S2S and the future of IIoT, please check out this recent interview with the IoT Roadshow and Scott Allen. You can also listen to the SoundCloud recording below!

Drone World: Applying IIoT Applications

“Drone World” may seem a bit overboard, but the fact is, drones are here to stay. We’ve spent time in these pages looking at unique and innovative drone applications in industries like utilities, precision agriculture, and even lifeguarding. Today, in honor of Memorial Day, we would like to take a moment and honor those men and women serving in the armed forces, by highlighting interesting government drone technology uses. Drones ‘Shot Into The Sky’ By The U.S. Navy The BBC News informs us how these innovative instant flight drones could be used as a method of defense for ships at sea suddenly burdened by a swarm of enemy drones. This project is known as LOCUST and it aims to launch a swarm of drones at high speed. Elizabeth Quintana from the military think tank Rusi believes that, “Drones could be used to take out enemy swarms at sea.” Drones That Can Sniff Out Radiation The Nevada National Security Site (NNSS) officials have recently purchased two drones to be a view from the sky in case of an emergency to sniff out and detect signs of radiation. It will be important to use these unmanned aerial systems (UAS) in situations that are to dangerous for humans. Other Applications of Drones Drones aren’t just for the government anymore, in fact we are already starting to see the industries below finding ways to improve safety, service and efficiency with the implementation of drones. Emergency Response Enables immediate action, providing emergency response teams with fast, flexible visibility to assess critical situations. Utilities Safely allows for the quick inspection of high voltage power lines and wind turbines, helping mitigate worker risk and improve monitoring. Military & Defense Assisting with intelligent surveillance and reconnaissance missions to deliver timely, relevant, and assured information to thwart potential threats. Oil & Gas Protects and helps maintain extensive miles of pipeline covering large, remote areas that would otherwise require enormous amounts of time and resources. Agriculture Creates more efficient farms by monitoring inventory, growth, water and fertilizer levels, and crop health to facilitate production and increase yields. Public Safety Supporting firefighting operations by providing more up-to-date information at a lower cost, while reducing the number of responders in harm’s way. We hope you have enjoyed our quick drone world recap, and as always tell us what we missed. The next time you see a drone flying in the sky, think about all the possibilities that drone or fleet of drones could be providing.

IoT Top News: M2M Propels Machines

Time and again, those keeping a pulse on the Internet of Things (IoT) space frequently hear about the “rise of the machines.” Humanity is not only discovering fascinating ways to integrate machines into our daily lives, but also finding new uses for machines as well. How? Machines are now “internet-connected” just like the smartphones we carry around in our pockets. And this isn’t just on the commercial side with the likes of smart thermostats or connected vehicles – even tractors and oil and gas machinery are industrial examples of where new “things” are now on the digital network. In fact, there are more M2M or “machine-to-machine” communication devices on this planet than humans. As GSMA Intelligence reported in 2014, there are 7.2bn M2M devices versus 7.19bn humans. Stuart Taylor from Cisco also wrote a prediction that “The Internet of Things (IoT) is a world where up to 50 billion things (or devices) will be connected to the Internet by 2020; or, the equivalent of 6 devices for every person on the planet.” Realizing the major role M2M devices continue to have in our connected world, specifically as it relates to the advent of machine learning, it’s only natural to highlight the impact of machines and M2M in the past, present and future. The Machines are Coming: How M2M Spawned the Internet of Things In the digital world, M2M wireless solutions will work for us quietly, in the background solving all our day-to-day needs. John Kennedy with Silicon Republic reports that, “M2M is at the heart of the industrial internet of things (IIoT), powering smart factories that can be run remotely from a tablet computer, and smart buildings that monitor their environment and feed data back to the cloud.”   Is Machine Learning Over Hyped? In the now 24-hour news cycle, often the top news lingers around lighter topics. So how much hype should be given to machine learning (ML)? The Huffington Post respondent Scott Aaronson, theoretical computer scientist at MIT, seems to think that “There’s no doubt in my mind that people 30 years from now will agree with us about the central importance of ML, but which aspects of ML will they rage at us for ignoring, or laugh at us for obsessing about when we shouldn’t have?   Machine Learning: Demystifying Linear Regression and Feature Selection Machine learning needs to integrate domain knowledge in order to improve the quality of data collected from analysts. Josh Lewis with Computerworld thinks that, “Business people need to demand more from machine learning so they can connect data scientists’ work to relevant action.”   Machine Learning Examples Crop up for Data Center Management Data centers appear to be the perfect place for enterprises to implement machine learning to its fullest. Christopher Yetman, COO at Vantage Data said, “There are also sensors that generate data about air pressure, humidity, temperature and supply voltage and typically feed into a programmable logic controller.”   M2M Technology Driving Agriculture’s Industrialization  On a global front, M2M is driving agriculture’s industrialization in South Africa. IT News Africa informs us that, “Given the ability to automate many monitoring and control functions through intelligent devices, agriculture is a prime target for leveraging M2M capabilities.”   We hope you have enjoyed this week’s roundup, and as M2M connections continue to pile-up, we urge you to consider the plethora of commercial and industrial use cases that can benefit from these innovations.

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.