Network Management Solutions for IIoT

The shift towards digital technology solutions and the rise of the industrial Internet of Things (IIoT) have transformed operations for many organizations. Currently, there are a number of wireless communication solutions available that are specifically designed for IIoT, M2M and SCADA networks. These technologies monitor, collect and transfer critical data in challenging environments to support mission critical use cases. As technology continues to advance, Sensor-to-Server (S2S) technologies have emerged to support advanced data practices, such as predictive analytics. IIoT has not only increased the number of devices in the field, but has also brought the OT and IT departments closer together. This convergence is challenging for many businesses as they look to find technology that will meet evolving demands. IT, for example, needs better field visibility as industrial networks become more connected every day. This need has driven a strong demand for detailed, real-time information solutions that will support IT network operations. Having a network management system (NMS) at the access layer helps meet those needs and companies like E2E have begun to offer NMS solutions specifically for IIoT, M2M and SCADA networks. These networking solutions help overcome some of the major visibility issues from an IT perspective and are suitable for operation in challenging environments . FreeWave’s NMS Partnership FreeWave recently announced a new technology partnership with E2E Technologies. E2E’s Stingray Network Management System (NMS) will support FreeWave’s WavePro™ wireless communication solutions. Stingray is optimizable for IT professionals looking to manage individual components of a limited IoT or M2M communications system within a larger IT network management framework. Companies in energy, utilities, municipalities, government, oil and gas, and more will benefit from this solution as they now have a technology solution designed to help bridge the IT/OT convergence gap.

Energy and Excitement at DistribuTECH 2017

This week we attended DistribuTECH 2017 with several thousand of the leading minds in technology, education and innovation for utilities, Smart Grid and municipalities. We had many great conversations about the direction of Industrial IoT (IIoT) and the all-encompassing digital technology shift. At the FreeWave booth we led many demonstrations of our latest technology. We also shared how our fellow attendees can achieve smart data at the Edge. Here is a small snapshot of the excitement and action from the show: FreeWave at DistribuTECH We had a lot to share at DistribuTECH this year. In addition to providing product demos at our booth, we just launched several important company, product and partnership announcements. Here’s the run-down on what we launched this week: New IIoT Products & Two New Partnerships Introduced at DistribuTECH Zumlink Z9-C and Z9-T Radios: FreeWave introduced the Zumlink-Z9-PE last Fall, but now it brings the next generation, high performance platform to market. ZumLink is the underpinning of the company’s go-forward IIoT strategy for IIoT and embedded radio applications. The Z9-C and Z9-T deliver high speed Frequency Hopping Spread Spectrum (FHSS) functionality in a radio module that is half the size of a credit card. FreeWave and Systech application partnership: Together with Systech, we announced an industrial Tank Level Control application that resides on and executes from FreeWave’s ZumLink IIoT Programmable Radio for edge networks. The new application features an easy-to-use “ITTT (If This Then That)” process control programming interface that will control analog, digital and RS485 sensors linked to the ZumLink programmable radio.  The FreeWave ITTT App is designed for a user-friendly experience and requires no previous programming knowledge or practice. Technology partnership with E2E Technologies: E2E is a comprehensive solutions provider specializing in communication architecture design, implementation and network management. E2E’s Stingray Network Management System (NMS), supports the full array of FreeWave’s industry-leading wireless communication solutions and is optimizable for IT professionals looking to manage individual components of a limited IIoT or M2M communications system within a larger IT network management framework. The New FreeWave We officially unveiled a new look and website that reflects our move to the next generation of the industrial IoT: The Programmable Edge and Fog Computing. The new FreeWave visually projects our future-focused mission to help organizations around the world connect and gain valuable intelligence from devices – even in the most challenging of locations and conditions – anytime, anywhere in a secure, reliable fashion. This week has represented several major milestones for FreeWave, and launching it all at DistribuTECH was the perfect platform for sharing both our news and the future direction of FreeWave. What do you think about the new FreeWave website?

2017 IIoT Prediction Series, Part 5: Major Public Utility Company Closes Doors

As 2017 kicks into full gear and a particularly interesting 2016 fades into the rearview mirror, we took a look around the IIoT landscape to see what this year might potentially have in store. Today, we wrap up the 2017 series – let us know what you think! On Tuesday, we started our predictions by looking at the potential development of Fog Computing at the Edge and its impact on cybersecurity. Wednesday, we predicted that the rise of IIoT applications will outpace consumer IoT apps. Thursday, we wrote about the challenge facing IIoT businesses as the workforce ages and new skills are needed for the ongoing IT/OT Convergence factor. On Friday, we predicted that the growth of smart cities infrastructure would force a connectivity standard for the IIoT industry. A Public Utility Closure in 2017 The maturation of interoperability standards and evolution of remote data collection technologies are forcing critical infrastructure and utility organizations to adapt at a new pace, in light of aging infrastructure and high percentages of the workforce that are nearing retirement. Existing management continues to struggle to match the IT and operations resources needed to build a comprehensive, integrated portfolio of applications that must work together to support the organization’s goals.  The prediction A public utility company will close its doors in 2017 due to challenges surrounding the adoption and implementation of modern IoT technologies.  There are numerous forces that support the prediction. Here’s our take on the big ones: Are you Taking Advantage of Fog Computing at the Edge? According to analysts, utility organizations are becoming more comfortable hosting critical infrastructure data and applications in the Cloud. But, in an effort to further optimize processes and shorten response times, utilities need to explore ways to host applications at the device/sensor level (i.e., the Edge otherwise known as Fog Computing). A decentralized network architecture that brings computing power closer to where data is generated and acted upon enables utilities to analyze, control and automate closer to the “Things” in the Industrial Internet of Things. In electric power, for example, where even milliseconds are vital, certain processes can move away from the Cloud and closer to the Edge. In an industry where cloud computing presents its own sets of challenges, can utilities go one step farther to look at new ways to optimize the “things” at the edge? IT-OT Convergence Presents Plenty of Challenges With identifiable business benefits and rapidly developing technologies that are closing the IT/OT divide, there are functional and operational differences between IT and OT groups that exist and complicate integration or convergence. IT and OT groups typically have fundamentally different charters, focus and personnel within their respective organizations. The challenges to IT/OT convergence are not the sensors, hardware, software or technology, but how each group perceives each project or opportunity and in turn, the solutions, which are skewed by their respective domains. In order for IT/OT convergence to be successful, communication is essential and in turn, there needs to be a clear understanding of each group’s roles – something we see utility organizations struggle with mightily, especially as an aging workforce butts heads with the next generation of digital-centric employees. However, the careful selection of technology for IIoT or industrial applications can help drive the convergence of IT/OT systems. For example, in electric utilities, the rollout of Advanced Metering Infrastructure (AMI) and Distribution Automation (DA) networks is truly an OT application. The source of the data will fuel IT/OT convergence because it is the data analytics applications such as outage detection, fault management, prepay and others that bring value to the Smart Grid. If utilities can proactively take a systems level view of its infrastructure and integrate legacy systems with modern IT systems, the convergence of IT/OT groups may prove less strenuous. Cyber-threats to the Utility Utilities are at the forefront of the Industrial IoT with complex and comprehensive networks for advanced metering infrastructure, energy management, distribution management and substation automation. The estimated growth in IIoT applications for utilities and energy industries will increase to more than 1.5 billion devices by 2020. This explosive growth in networks, smart sensors and devices, and automated systems requires utilities to address, implement and monitor the security of their data networks because these are the networks providing command and control of critical infrastructure that is the Smart Gird. As technology has evolved, so has the intelligence and sophistication of cyber terrorists and their tactics. If utilities do not build a comprehensive security layer, especially across its internet-connected systems, there is little faith they’d be able to combat against such tactics as Denial of Service and Intrusion – the two top threats according to the Federal Communications Commission (FCC). If utilities don’t invest in hardened/proven networking and communications equipment, network access control programs, data encryption strategies, advanced monitoring technology and explore various other tactics for limiting exposure to harmful cybersecurity threats, they may be forced out of business anyways. Today, it is not a matter of “if” a cyber-attack is going to take place, but when. We hope you are ready. All in All We hope this prediction is one that doesn’t come to light in 2017, especially with all the direct investments being made in our critical infrastructure projects across the nation. However, a competitive organization is both agile and proactive in meeting market demands – something utilities need to learn from as business continues. That does it for our list of 2017 IIoT predictions – hope you enjoyed and please be sure to send your questions and comments below!

Industry 4.0 Top News Roundup

Industry 4.0, another term being batted around for the Industrial Internet of Things (IIoT) to explain the next-generation of industrial manufacturing and a new data exchange paradigm, is bleeding into multiple industry dialogues to describe the new landscape of how things are being made. With all the hype surrounding the idea of a “smart factory,” it seemed fitting to turn our attention towards highlighting our top news being reported on Industry 4.0. Industry 4.0: the urgency of data standardization By @Antoine_Rizk1 | Published on @ManufacturingGL “Sometimes presented as the new industrial revolution, Industry 4.0, primarily represents an advance in production means and practices. Characterized by interconnected machines and systems, it involves making production and supply chains smarter in order to improve efficiency in resource allocation and increase agility in production processes.”   Industrial Analytics Based On Internet Of Things Will Revolutionize Manufacturing By @LouisColumbus | Published on @Forbes “Industrial Analytics (IA) describes the collection, analysis and usage of data generated in industrial operations and throughout the entire product lifecycle, applicable to any company that is manufacturing and selling physical products. It involves traditional methods of data capture and statistical modeling. However, most of its future value will be enabled by advancements in connectivity (IoT) and improved methods for analyzing and interpreting data (Machine Learning).”   Drones will transform the way food is grown next year By @Harri8t | Published on @CNBC “Drones are transforming agriculture — giving farmers new tools to supervise crops and check on fields from the air — and 2017 will be be a pivotal year for adoption, say industry experts.”   US Manufacturers Too Slow to Adopt Industry 4.0: BCG Study By IW Staff | Published on @IndustryWeek “Nearly 90% of manufacturing leaders surveyed by BCG regarded adopting Industry 4.0 technologies as a way to improve productivity, but only about one in four see opportunities to use these advances to build new revenue streams. Many are pursuing isolated initiatives scattered throughout the company, BCG found in its new report, “Sprinting to Value in Industry 4.0,” without a clear vision and coordination from the top.”   Embracing ‘Industry 4.0’ By @alansmurray | Published on @FortuneMagazine “There’s a interesting new report out from BCG this morning on “Industry 4.0” – the German’s preferred term for how big data, cloud computing, sensors, advanced analytics, augmented reality and improved robotics are dramatically changing the world of manufacturing (known in GE-land as the “Industrial Internet”).” As we conclude another round of top news, we hope you were inspired and informed about the latest in Industry 4.0. It’s clear that business digitalization will only continue to add more technology, whether that be IoT, sensors, cloud computing and other solutions. Our job is to be ready and informed about how tomorrow’s technology could help enterprise digital transformation today.

Data that Drives Electric Vehicles

There was a lot of hype surrounding electric vehicles when they first hit the market for consumers. Supporters saw electric vehicles as a key solution for battling gas prices and making a positive impact on the environment. Over the years, several countries throughout the world have incentivized the purchase of electric vehicles through subsidies available to both the car makers and the buyers. However, as we roll into 2017, sales are short of expectations in the U.S. Currently, we’re seeing only about 400,000 electric vehicles on the road. In President Obama’s First term, he said that he believed the U.S. could have one million electric vehicles on the road by 2015. When January 2016 hit, the estimate was looking like it could take up to another four years to accomplish the goal – especially with continuing low gas prices and troubled electric vehicle battery technology. To help further the push towards electric vehicles, the White House recently hosted an electric vehicle datathon to find and discuss what data would drive the deployment of more electric vehicles on U.S. roads. The event was co-hosted by the U.S. Department of Energy and four National Laboratories. The White House announced that electric vehicle experts, automakers, charging-station providers, cities and states collaborated with software-development and data-analysis communities as the group looked for answers to the electric vehicle challenges. Together, they worked to better understand how plug-in (electric) vehicles contribute to and help the environment and economy. They also worked to find out find out what it will take to make U.S. consumers more interested in purchasing electric vehicles. Electric Vehicles and the Right Data Electric vehicle manufacturers, well aware of the challenges and slow adoption, have also worked to provide U.S. citizens with appealing electric vehicle options. During the R&D process, these manufacturers are challenged with improving vehicles to increase purchases and usage in the U.S. Battery challenges aside, careful selection of communication technology is essential to improving data and performance of these vehicles. Without proper data collection and transport, vehicle performance cannot be analyzed and improved. One of the leading electric car companies uses Sensor-to-Server (S2S) solutions for RTK base station communications to improve data and correlation. As the Internet of Things (IoT) infiltrates more areas of our everyday life, S2S solutions designed to be robust and reliable in heavily industrial environments work as a communication solution for many industries across the board. From typical industrial environments like oil/gas and water/wastewater, to smart cities and the automotive industry and more specifically, electric vehicles. S2S solutions offer high-speed, long range connectivity with 900 MHz RF technology and they can support third party applications. As the electric vehicle industry looks to data for overcoming challenges, these solutions are designed to collect, protect, transport and control critical data from network end points all the way back to the server. Electric car manufacturers have a ways to go in terms of driving more adoption from consumers, but they have a nice selection of IoT and sensor-based technologies to help improve data and communications.

2017 Analyst Predictions – Industrial IoT

Predictions can be enlightening as we round out the end of the year, and industry analysts covering the Industrial Internet of Things (IIoT) have begun forecasting what to expect in 2017. In the ever changing digital business landscape, companies need to keep a pulse on the technology and regulatory environments to have direction on where to focus their efforts. Over the past few years, IIoT has taken on the shared title of industry 4.0, as new ways of connecting businesses and consumers impact systems infrastructures and technology integrations across many, if not all. business lines. In honor of reigning in 2017 as a strong year for the industrial internet, we have dedicated this week’s round up to highlight some of the top IIoT analyst predictions in the coming year. Gartner Predictions: Surviving the Storm Winds of Digital Disruption  By  Daryl C. Plummer, Martin Reynolds, Charles S. Golvin,  Allie Young, Patrick J. Sullivan, Alfonso Velosa, Benoit J. Lheureux, Andrew Frank, Gavin Tay, Manjunath Bhat, Peter Middleton, Joseph Unsworth, @rayval, @DavidFurl, Werner Goertz, @JCribbs_Gartner, Mark A. Beyer, @Alex42Linden, @noahelkin, @nheudecker, Tom Austin, @mc_angela, Fabio Chesini, Hung LeHong | Published on @Gartner_inc “Digital business innovation creates disruptive effects that have a wide-ranging impact on people and technology. However, secondary ripple effects will often prove to be more disruptive than the original disruption. Digital strategists must actively identify secondary effects when planning change.” Gartner Also Suggests That its Time to, Harness IoT Innovation to Generate Business Value By @chetster | Published on @Gartner_inc “The Internet of Things is moving beyond concepts and trials, and has begun to deliver business benefits across a range of industries. Studying innovation and how early use cases have fared will help CIOs and IT leaders capture business value.”   Forrester Predictions 2017: Cybersecurity Risks Intensify By @AmyDeMartine, Jeff Pollard, @infosec_jb, @acser, @heidishey, Christopher McClean, @jz415, @merrittmaxim, @sbalaouras, Trevor Lyness, Peggy Dostie | Published on @forrester “The connected world has arrived; we live and work in it. In this new reality, the next 12 months will see battles rage that will determine the amount of control individuals have over their own data and right to privacy as well as the offensive and defensive responsibilities of our governments. This report guides security and risk (S&R) pros through five predictions for 2017 that highlight escalating ramifications of poor security hygiene and how to mitigate potential damage.”   Ovum 2017 Trends: Radio Access Networks By @sonixag | Published on @OvumICT “This is part of Ovum’s 2017 Trends to Watch series. This report looks at what Ovum believes will be the major trends next year when it comes to the radio access network (RAN) market.The RAN market remains a challenging area and the need for spectrum remains a constant concern. RAN vendors are looking for new growth areas, and everybody wants 5G and they want it now. All of these factors are driving market trends.”   IDC 2017 Forecast: Manufacturing Worldwide By @kimknickle, Simon Ellis, @hashtonIDC, Christopher Holmes, @jeffhojlo, @ivanoortis, @VeronesiLor, Jing Bing Zhang | Published on @IDC “This IDC study provides manufacturers with the top 10 predictions and underlying drivers that we expect to impact manufacturers’ IT investments in 2017 and beyond. Technology leaders and their counterparts in the line-of-business (LOB) operations can use this document to guide their IT strategic planning efforts. According to Kimberly Knickle, research vice president, IT Priorities and Strategies, IDC Manufacturing Insights, “Technology continues to reshape the relationship between business and IT for innovation and digital transformation. Manufacturers want to work smarter using digital technologies in their products and processes and throughout the value chain. Our predictions create a framework for IT and line-of-business executives to plan and execute technology-related initiatives in the year ahead.”   As we conclude our highlights this week, we should realize these predictions are just the tip of the digital iceberg anticipated for 2017. The future could see more intelligent technologies communicating in industry 4.0 with machines processing more data. We could also expect to finally dig deeper into our IoT connected understanding. All we can do is hold tight as the next corner of digital transformation unfolds.

Top News: Unmanned Aircrafts Taking Flight

As we near the end of 2016, it’s hard to ignore the current and potential impact that Unmanned Aerial Systems (UAS) technology has on society. News reports from around the world continue to highlight many instances of unmanned aircrafts taking to the skies. As the Federal Aviation Administration (FAA) and other international airspace regulatory bodies continue opening up the airways for new technology deployments, businesses look to be in a prime position to leverage numerous unmanned flights around the globe. Despite the continued pressures on government agencies to make UAS deployable in commercial airspace, regulators and safety officials still tend to err on the side on caution. Numerous testing sites and operations have already begun in hopes of helping to define and implement the safety protocols UAS operators need to follow. However, will regulators allow UAS to fly “out of sight” missions one day? Will retailers finally get approval for the chance to deliver packages via drones? How will airport officials help coalesce flight patterns from both manned and unmanned systems? Only time will tell, but as the excitement around UAS grows, we’ll keep a keen eye on the developments and use cases. Take a moment to enjoy this week’s highlights of the top UAS coverage throughout the past week. FAA to Conduct Unique Drone Testing at DIA By @CBS4Jeff | Published on @CBSDenver “Unique drone testing is going on at Denver International Airport. The only other testing like it has been done at JFK Airport in New York and at Atlantic City Airport. Now testing is looking at how to identify and control drones near airliners in Denver.”   NASA Proves Out of Sight UAS Operations By @NASAAmes | Published on @UASMagazine “During the test, two of the drones flew beyond their commanders’ lines of sight. As many as two drones were operated in the same test airspace, separated by altitude and within sight of their operators. The pilots used the NASA-developed UTM research platform to gain information about all the drones’ locations and proximity to other air traffic and hazards. UTM also informed other airspace users of potential hazards and conflicting operations that could affect their plans.”   Flight at the Bay Shows UAS Role in Emergencies By GPS World Staff | Published on @GPSWorld “The test also helped Shore Regional Health explore new ways of providing access to medical care to rural areas, according to William Huffner, Shore’s chief medical officer. UAS technology has the potential to bring supplies not only to medical staff, but also directly to patients in isolated areas.”   The future is here: UAS are delivering Domino’s pizzas to customers By @mcwm  | Published @qz “To order a pizza with a drone, a customer has to opt into the service, and can then order online or through the Domino’s app to get the pie they desire. Right now, Domino’s told Quartz, the drones have a delivery radius of 1.5 km (about one mile) from the Whangaparaoa store, but the company is aiming to expand that to about 10 km (roughly six miles).”   Disney Plans to Fly Over 300 UAS Every Night This Winter at Disney World by @aprilaser | Published on @Recode “In August, after the Federal Aviation Administration released the drone rules for commercial operators, Intel was granted a waiver to fly an unlimited number of its Shooting Star drones per pilot at night over any uncontrolled airspace in the country.”   As we conclude this week’s unmanned aircraft edition, we hope to have inspired, informed and most of all entertained with all the possibilities of UAS taking flight. Reliable IoT connectivity and data communications are key to opening doors to what some deemed impossible to happen. It’s time to embrace these new technologies and discover what the future will unleash for the next-gen airspace.

Creating A Safer Environment with IoT

We can get a better understanding of the world around us by consistently monitoring our environment. The Internet of Things (IoT) has enabled large-scale environmental monitoring for commercial, industrial and research purposes. New innovations are constantly in progress that will allow us to make better, safer decisions in our everyday life and protect our environment. For example, imagine how much safer roads would be if your car could warn you about upcoming road hazards such as heavy snow or black ice based on weather and road condition data. When connected to an IoT network, modern technologies can also be used to collect data for weather predictions and monitoring. Oil and gas companies can better protect marine life and ocean environments with offshore leak detection systems. On land, residents living near coal power plant facilities can feel better about the air they breathe when air-quality is consistently monitored. Sensor-2-Server (S2S) communication and networking solutions are increasingly used to help monitor the quality of the environment to prevent and actively identify a number or potentially dangerous situations, such as hazardous material leaks and fugitive emissions. From environmental impact assessments and air quality monitoring to soil dynamics analysis, S2S solutions are meant to gather data from any sensor at any point in the IoT network and bring it back to a specific location to be acted upon. With S2S technology in place, operators can consistently gather and transmit data that affects the quality of life for the world population. It’s important to find a solution that has been proven in the harshest environments – that can withstand the weather extremes and volatile elements. Understanding Your Environment in Real-Time In many applications, especially when safety is the top priority, it is critical to review timely and accurate data to ensure there are no glaring issues with the environment. S2S technologies for environmental monitoring should offer real-time information, as well as large quantities of data that can be analyzed to understand trends through predictive analytics engines. Here are some additional applications where S2S solutions can be leveraged for environmental monitoring: CBRN Monitoring for protective measures where chemical, biological, radiological or nuclear warfare hazards may be present Fugitive Emissions Monitoring for volatile organic compounds (VOC) – this is especially common in oil and gas Leak Detection and Repair (LDAR) to ensure compliance with Environmental Protection Agency regulations. Subsea Monitoring for exploration, research and offshore oil and gas applications Levee Performance Testing to understand levee load capacity and prevent breaches. Water Level Monitoring to track rainfall or water levels in industrial settings. River Flow Monitoring to determine how much water flows through lakes and streams. Seismic Monitoring and volcanic monitoring to provide early detection of these events and enable authorities to warn citizens in advance to take appropriate precautionary measures. As we become increasingly connected to the world around us, we also gain visibility into the surrounding environmental conditions. This offers a wide and diverse range of industries a unique opportunity to monitor the environment in new ways and make intelligent decisions to prevent future negative impacts on the environment as a whole.

Guest Post: Keep the Data Flowing in Oil and Gas

By Joyce Deuley, Sr. Analyst and Director of Content at James Brehm & Associates LLC State of the Industry This year has proved challenging for oil and gas companies: falling prices, crackdowns from environmental regulations, growing concern about the destabilization of land due to fracking, as well as an increasing gap between jobs and skilled engineers to name a few issues. Royal Dutch Shell, for instance, recently terminated its plans to drill off the Arctic coast of Alaska for the “foreseeable future”—this is after $7 billion dollars and more than five years spent on exploratory drilling (with disappointing results) and the purchase of costly leases and permits for the privilege to do so (Daily Mail). The Arctic Circle has been viewed by many as a “holy grail” in terms of rich oil and gas reserves—the largely untapped Great White North, if you will. Initiatives in the Baltic have also come under discussion lately, as Russia negotiates the political quagmire it has found itself in concerning territorial disputes. Still, it isn’t all doom and gloom. Our reliance on oil and gas for manufacturing, shipping, transportation, energy, and more hasn’t dissipated—rather, it will continue to increase with the rising population and result in rapidly expanding urbanization. More food will need to be shipped globally, more cars will be driven, more homes will be heated, more materials will need to be made, etc., providing rich opportunities for oil and gas companies to invest in scalable solutions, as well as to firmly root themselves as valued players in the market. Investors, and other interested parties, are paying close attention to the oil and gas markets to better determine how best to mitigate depleted reserves and improve overall productivity and efficiency: keeping their bottom lines low and profit margins high. To pull back from an environmental and global perspective on the state of the industry, let’s instead bring it into a sharp focus with its current business challenges. Problems with efficiency include legacy pipeline and refinery infrastructure that hasn’t been updated or modernized in decades, a shortage of skilled labor as qualified engineers approach retirement, the need for increased monitoring and control across remote areas, and the mission-critical need for the aggregation, interpretation and management of unprecedented amounts of data. But, effectively managing that data can present major challenges for oil and gas providers: with so many devices at the edge, they are practically drowning in the seemingly endless flood of information that is collected. The need to find reliable data management platforms that help remove complexities associated with data visualization is critical for these companies’ ability to identify and enact valuable business decisions. What to Do About It It is no secret that the Internet of Things (IoT) has proven to be disruptive across a myriad of markets. While the technologies and principles of the IoT have been around for decades, predominantly within the manufacturing and processing industries, its relatively nascent presence within the consumer electronics and wearables markets has helped rebrand the IoT with a level of “sexiness” it previously lacked. But at the heart of the IoT is a near-obsessive desire to decrease operational and deployment costs, meet compliance regulations and to dramatically increase productivity and efficiencies. The oil and gas industry happens to be one of the largest growing areas for IoT deployments and has found many ways to benefit from connected solutions, such as pipeline and wellhead monitoring. Oil and gas pipelines can span across hundreds of miles of rugged terrain. The ability to monitor such a territory can be challenging, as harsh winters and debilitating droughts, forest fires and or heavy rains can put stress on the integrity of a pipeline, plus the remote nature of its location can prevent technicians from being able to regularly service it. Another challenge is knowing when and specifically where a problem occurs. For instance, if there is a malfunction that results in a leak along one of the more remote sections of a pipeline and there is no sensor to alert someone, we could be looking at a nightmare of a situation: environmental damages, not to mention untold amounts of costly clean up, repairs and definitive losses to the oil and gas company at large. By utilizing connected sensors along the lengths of their pipelines, oil and gas companies can overcome these challenges and monitor flow, pressure, integrity of the pipeline and more. Empowered by the IoT, oil and gas providers can receive near real-time information about their entire operation, enabling decision makers to better manage their technicians, as well as improve overall production and reduce maintenance and operational costs. As oil and gas companies wait for the stock market to pivot from $50 a barrel, they need to look seriously at implementing business solutions that are going to help them weather this lull. The IoT provides many opportunities for oil and gas providers to tighten their belts by increasing efficiencies and production, ultimately reflecting in a more cushioned bottom line. Pipeline monitoring and control applications can help reduce non-productive times by up to 30%, which is just one small example of how dynamic transformations could be made by the IoT. About Joyce Deuley As Sr. Analyst and Director of Content, Joyce researches and interprets market trends, locates opportunities for growth, and researches the current happenings in the M2M and IoT space, providing our clients with up-to-date and actionable information. Joyce specializes in technical communication, translating complex data into layperson-accessible presentations, articles, and white papers. Additionally, Joyce manages, contributes, edits, and designs our newsletter, The Connected Conversation. She currently offices out of, and is a founding member of Geekdom, a tech accelerator-like co-working space in San Antonio, TX. Previously, Joyce worked as a Secondary Researcher at Compass Intelligence, learning the M2M markets alongside James Brehm. While at Compass Intelligence, she gained experience in market research, competitive analysis, content strategy, as well as qualitative research. Joyce graduated with a B.A. in English, focusing on Professional and Technical Communication, from the University of the Incarnate Word (UIW) in San Antonio. She

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.