Fog Computing Archives - FreeWave

What We’re Thankful for in IIoT

As we approach Thanksgiving, we can’t help but reflect on what an unforgettable year it has been. Transformation and innovation have been at the forefront of the digital technology landscape as Industrial IoT emerged as a clear game changer. Businesses, looking to modernize and stay competitive, are changing the way they operate – and we are incredibly grateful that we get to play a small role in their efforts to adapt digitally. Businesses, especially those in the industrial and commercial sectors, now have the ability to incorporate intelligence and automation at the most remote edge of their networks. Today, we are looking at networks that can reliably monitor data, execute logic locally and enable visibility globally through the Cloud. In these times of transformation, learning, and change, we’ve found a lot of things to be thankful for. Here’s what we are thankful for in IIoT: Business Transformation and Beyond Businesses are transforming in ways we never thought possible thanks to the powers of automation through IIoT technology. Today, organizations are focusing on things like increased throughput, intelligent hardware, app dev and security as they look to improve their business operations. With the right set of technology in place, ROI happens fast and production is optimized.  With new approaches like fog and cloud computing we are expecting to see more bandwidth and better real-time data analytics in these types of networks where data is critical for operations. Beyond the business benefits, IIoT is set to improve things like environmental and seismic monitoring Edge Intelligence Businesses today have the option of leveraging low-power FHSS technology to automate processes at the network edge. The proliferation of smart sensors and high-bandwidth devices makes low-power FHSS technology a viable and cybersecure wireless data option. By employing FHSS technology, businesses can take advantage of intelligent edge communication devices that can be deployed as process automation nodes that make decisions and take action at the Access Level (or at the sensor or device). Increased Safety Thanks to devices at the edge and self-healing networks, IIoT has enabled environments where less manpower is needed in the field, facilitating a safer work environment in industries where field sites can be hazardous. Modern technologies can now collect data in remote and hazardous environments, significantly reducing the number of trips to unsafe locations. The reduction in man power in the field, allows companies to re-focus that man power where it’s needed to improve business operations. Opportunities for developers New hardware solutions have the ability to host third-party applications at the edge of the network. This has created a big opportunity for developers to create apps designed for IIoT needs. Additionally, as Node-RED programming has risen, it is has become feasible for non-developers to create proprietary applications without a computer engineering degree. Professional developer or not, there is plenty of room for app development in IIoT. IIoT is changing the way businesses operate and we now have the power to make decisions that optimize production and minimize downtime. As a technology provider in this space, it is an incredible opportunity to innovate and create solutions that meet both today’s needs and the demands of tomorrow. We’re thankful for the opportunity to innovate in this space, but most importantly we’re thankful for our employees, customers, and partners who are on this journey with us. Have a Happy Thanksgiving!  

Industrial IoT Top News: Fog and Edge Computing

As more IoT devices are deployed (with billions to come in the near future) there is a substantial push towards on-device analytics, programmability, and command/control for critical applications. This is especially relevant for businesses that are driving operational transformation with remote or industrial networks. As a result of these factors, all roads point to fog and edge computing as critical practices for meeting the future demands of Industrial IoT (IIoT). Below you will find our list of top news stories that highlight the trends, research data, predictions and best practices around edge and fog computing over the past few weeks. If you want to read about an edge computing application being deployed with our customers today, read about the “Small SCADA” edge application here. Edge Computing Supports the Growing Needs of IoT Devices An article recently featured in Network World by Raj Talluri (@rajtalluri) looks at the increasing power of everyday IoT devices. This newly achieved power results in reduced data center loads and cloud-based capabilities that are leading to IoT innovation. As a result, on-device computing and analytics (i.e. edge computing) are growing in importance. “Edge computing delivers tangible value in both consumer and industrial IoT use cases. It can help reduce connectivity costs by sending only the information that matters instead of raw streams of sensor data, which is particularly valuable on devices that connect via LTE/cellular such as smart meters or asset trackers. Also, when dealing with a massive amount of data produced by sensors in an industrial facility or a mining operation for instance, having the ability to analyze and filter the data before sending it can lead to huge savings in network and computing resources.” The future of IoT Deployments Points to Fog Computing A recent TechTarget article by Alan R. Earls looks ahead at fog computing. It notes that large amounts of data required for IoT devices is leading to a future that includes fog computing and edge IT. The article reveals that IoT leverages more devices than ever was conceivable. In fact, the most recent estimates foresee more than 50 Billion IoT devices deployed in the coming years. These devices are often deployed outside the data center, far beyond the reach of IT professionals. As a result these devices are going to be increasingly software-defined to allow for remote management, revealing the need for critical fog IT strategy planning. “Tomorrow’s cloud will need to extend beyond the walls of a service provider’s data center, seeping into the business — becoming almost pervasive via edge devices and local connection hubs.” Successful Fog Implementation   With Fog Computing on the horizon, an EE Times  post by Chuck Byers of @OpenFog, offers tips for successful fog implementation. The post focuses on recognition of where fog techniques are needed, spanning software across fog nodes North-South and East-West, understanding the pillars of the fog as identified by OpenFog, Making fog software modular and linked by standard APIs, and tips for making each installation very easy. “Software is the key to the performance, versatility and trustworthiness of fog implementations. Make it manageable and interoperable by carefully partitioning it into functional blocks. The interfaces between these blocks should be based on well tested, standard APIs and messaging frameworks. Open source projects can be a good starting point for fog software development once you’re identified the right properties for your applications.” The Transformative Nature of IoT A post in Computer Business Review discusses the shift in IoT from optimization from transformation. According to the post, more than half of IoT projects have met or exceeded their goals even though most are sticking to improving company efficiencies rather than transforming business processes. A recent survey states that for the 47 percent of companies which failed to meet IoT goals, two reasons stood out: company culture and a shortage of skills.This further demonstrates the importance of getting the whole company behind IoT projects in order to have the greatest chance of success. The article also highlights the early, but growing importance of edge computing. “Edge computing, where computing and analysis is carried out near where data is gathered, not in a central data centre, is continuing to grow in importance but there’s still progress to be made. About 30 per cent of sensor data is currently analysed ‘at the edge’, the rest goes to a traditional data centre which creates issues of latency and bandwidth for the network. But looking forward those surveyed expected more than 70 per cent of sensor data would stay at the edge within five years.” A New Look at Data Through Edge Computing   A TechTarget IoT Agenda Blog by Jason Andersen (@JasonTAndersen) examines how more engineers are placing a higher importance on data produced by their automation systems than on the tools needed to make them happen. This evolution in thinking reflects the increasing potential that data and advanced analytics offer enterprises in untapped business value, especially looking at emerging practices like edge computing. “Currently, most industrial enterprises are in the ‘informed’ stage, where they are starting to understand and realize the potential of IIoT, but have not made strides in tapping its potential. However, many are beginning to look ahead and think more tactically about progressing to the next phases.” Could Edge Computing Weaken the Cloud? An opinion piece by Bob O’Donnell (@bobodtech) in TechSpot examines the potential changes we can expect to see as we move closer to edge computing. While he doesn’t see cloud going away by any means, he does expect a shift towards edge computing in some areas. “Exactly what some of these new edge applications turn out to be remains to be seen, but it’s clear that we’re at the dawn of an exciting new age for computing and tech in general. Importantly, it’s an era that’s going to drive the growth of new types of products and services, as well as shift the nexus of power amongst tech industry leaders. For those companies that can adapt to the new realities that edge computing models will start to drive over

International IIoT Perspectives: Fog Computing On a Global Scale

Fog Computing is a slippery concept. It combines two critical components of data computing today, Edge and Cloud computing, into a system that leverages the strength – and necessity – of both. This idea of local computing (the Edge) combined with more complicated analytics engines (the Cloud) opens up a world of possibilities for data communications. Fog Computing & Emergency Response Earlier this fall, researchers at Georgia Tech looked at the application of Fog Computing in areas struck by natural disasters. In these areas, traditional means of internet connection are often knocked out of commission, leaving rescuers and victims unable to communicate with one another, even though there are many apps designed to help facilitate rescue. Where Fog Computing comes in is that rather than relying on a direct connection to the internet, different Fog nodes can be leveraged to create an ad hoc network that can still send basic messages: However, one important advantage of a fog system is that messages can be distributed between a broad network of computers through temporary ad hoc connections, even without live internet connections. The geo-distributed network of fog nodes, which could be phones, tablets or any device part of the Internet of Things, could generate communication channels in areas where there were none before, allowing the creation of population density maps in flooded areas. Another application would allow users to check the fog network to see if their family members are safe after a crisis event. Fog Computing applied in this setting is applicable around the world, as we are reminded daily of both the ubiquity and fragility of wireless communications against the whims of nature. Smart Grids Need Fog Computing Across the globe, more and more countries are jumping into smart grid deployments. The good side is that smart energy tools are critical to managing resources. The bad side is that most are not sufficiently developed with the necessary security infrastructure in place. When considering the rapid development of smart grid tech, Fog Computing quickly comes up as a viable tool for ensuring reliable data communication and information transfer between consumers, grid operators and larger energy providers. The Open Fog Consortium, a global Fog Computing group comprised of technology and academic thought leaders, has formed Resilient Information Architecture Platform for Smart Grid (RIAPS), a project aimed at developing software for Fog Computing platforms: RIAPS is very different from conventional platforms as it was designed for inherently distributed and decentralized applications. An application is composed of interconnected real-time software components (similar to micro-services) that can be event- and/or time-triggered and that interact via well-defined communication patterns, including publish/subscribe and synchronous and asynchronous service invocations. Such components are location transparent and agnostic about the underlying messaging framework. Although the project is based out of Vanderbilt University, in the United States, the repercussions will be felt throughout the world. Is Fog Computing the Final Answer? While Fog Computing has yet to be standardized and applied across the wide range of IoT technologies out in the field today, its ability to combine both local and Cloud data analytics is something that can have an impact in both the consumer and the Industrial IoT. However, the first adapters, companies that play in IIoT settings, will be largely responsible for driving the growth of this concept moving forward into the future.

Manufacturing in the Age of IIoT

Few industries can claim such a foundational impact on the United States as the manufacturing industry. Modern manufacturing began with the birth of the assembly line and the transformational effect it had on the automobile industry. Companies then adopted that approach to product manufacturing and logistics. The early phases of the next generation of manufacturing appeared as machine-to-machine (M2M) communication, a forbearer of the concept behind the Internet of Things (IoT). Eventually, IoT became so broad that specific designations were needed to differentiate between the consumer and industrial side of things, thus paving the way for the Industrial IoT (IIoT). Today, manufacturing companies, while often on the leading edge of automation technology, are still scrambling to adapt to the explosion of sensors, communication platforms, big data and high-speed analytics to maximize efficiency and future-proof their products or designs. Some companies are touting the idea of retrofitting – a concept that has existed for some time – but some plant engineers may be wary of the need for continual updating to a system that is bound to become irrelevant at some point. Still, the process can be relatively painless, and is quickly becoming necessary, as Plant Magazine notes: … Most food manufacturing and processing plants have motors powering essential equipment such as mixers, conveyors and packaging machines. But they’re just motors. They don’t play in the same league as other intelligent devices. With years of service to go, it’s difficult for plant managers to justify replacing motors that work just to make an upgrade with smart features. But motors can connect to the IIoT without a complete overhaul. Instead of investing in new, more intelligent/smart equipment, consider investing in sensors that provide similar functionality to connected devices. Smart sensors attach to almost any standard low-voltage induction motor. Sensor technology is sophisticated enough to be small, functional and energy efficient. For certain kinds of manufacturing plants, a complete overhaul may not be necessary, and a ‘simple’ retrofitting process might easily solve the first part of the problem. The second part of the problem, or challenge, is that along with smart hardware, plants also need the software and data processing capabilities to keep pace. Some plant engineers are solving these challenges by deploying programmable radios capable of hosting third-party applications so that the data can be transmitted in smaller, highly specific packets, making the transport both fast and easier to push into predictive analytics platforms. From there, software companies are building in the ability to process data in the cloud, essentially running all critical data and software operations through either a fog or cloud computing process. Cloud software services have the potential to be highly customizable based on the needs of the manufacturing plant. These technologies are good examples of the ongoing convergence between traditional information technology (IT) and operations technology (OT) needs in industrial markets. Currently, the manufacturing industry is sitting in an interesting spot: leaders in the M2M world, but still adapting to the IoT world. Where the industry ends up in the next 10 years could be a strong indicator of the economic and financial temperature of the domestic and international marketplaces.

IIoT Top News — Security Remains Top of Mind

Cybersecurity has been top of mind for industry experts and consumers alike. The WannaCry ransomware is putting a legitimate scare into affected companies, although many are apparently preparing to call the hackers’ bluff. Yesterday, another cyberattack was announced as well, and it has the potential to be far more lucrative for the developers. The common denominator between the two? A leaked exploit developed by the NSA that leverages a Windows file-sharing protocol. These attacks are indicative of the long-term game of cat and mouse that the government and private enterprise faces for the foreseeable future of security and counterintelligence. Moving forward, the growing network of connected devices for the Industrial Internet of Things (IIoT) faces similar security threats. This week, we found several stories demonstrating some of the solutions surrounding those potential security issues. The 9 Best Practices for IIoT from a Dell Security Expert   At a recent presentation for 2017 Dell EMC World Conference, Rohan Kotian, Dell EMC’s senior product manager for IoT security, spoke about his nine best practices for improved IIoT security. His number one strategy? Simply understanding the concerns. Many IoT devices come out of the box with few security controls in place, and understanding the risk is the most important step in addressing them. In this article from Tech Republic, you can read Mr. Kotian’s other nine best practices, including studying the attack trends, classifying risk, and leveraging fog computing.   IIoT Market Expected to Approach One Trillion Dollars by 2025   Grand View Research writes that the industrial Internet of Things will experience explosive growth over the next decade, going from a $109 billion industry in 2016 to an expected $933.62 billion by 2025. The massive market increase will be driven by a number of factors, one of which continued investment by government agencies and corporate leaders. As the report states, “The role of the Internet of Things (IoT) is increasingly becoming more prominent in enabling easy access to devices and machines. Government-sponsored initiatives and innovative efforts made by key companies, such as Huawei, GE, and Cisco, are anticipated to enhance the adoption of IIoT worldwide over the forecast period.”   IIoT Presents Unique Security Challenges Security is always a top priority in the Internet of Things, but IIoT applications present unique challenges. In this article from CSO Online, Phil Neray, CyberX’s vice president of industrial cybersecurity, writes that despite the growth of IoT applications in oil, gas, electric, and pharmaceuticals, “The fact is that all of these devices were designed a long time ago.” That means IIoT innovators have the challenge of integrating the newest technology into systems that may be decades old. This sort of retrofitting can make security a real challenge and there are few experts available who have both the knowledge of legacy systems and the latest IIoT solutions.   Sprint to Deploy LTW Cat 1 by End Of July   The Internet of Things relies heavily on low-power communication protocols to perform, so a recent announcement on FierceWireless.com that Sprint will be releasing LTE Cat 1 by the end of July is music to IoT developer’s ears. LTE Cat 1 is designed to support low-power applications on the Sprint network such as vehicle telematics and industrial IoT applications. “As one of the leading enablers and solution providers of the internet of things, Ericsson believes in its power to transform industries and capture new growth,” said Glenn Laxdal, head of Network Products for Ericsson North America. “Ericsson looks forward to partnering with Sprint to deploy Cat M1 next year and bring the transformative power of IoT to the Sprint Nationwide network.” The announcement also noted that Cat M would be following in mid-2018. TE Cat M1 and LTE Cat NB1 will support other applications requiring ultralow-throughput and power consumption.

IoT Spurs Wireless and Ethernet Technology Growth

In 2017, we are more connected than ever before. From a consumer standpoint, our homes are smart – they can change temperature based on our presence or preferences; our cars act more like computers; we can monitor our nannies from our computers at work; and, we can remotely lock our doors –just to name a few. This growth in connectivity isn’t limited to the consumer realm though – it has impacted the vast majority of industrial applications as well. Our critical infrastructure is becoming more connected to conquer traffic management problems, monitor the environment and improve manufacturing. Digital technology is no longer a “nice to have” – it’s a necessity for optimal business operations and we see many industries turning to wireless solutions. Chances are that even the most remote oil pumpjack sitting 30 miles away from the nearest highway has several connected devices onsite and it is probably using wireless technology to control, monitor and connect. It seems that wireless and Ethernet technologies continue to have an important place in our increasingly connected world. The Future Looks Good for Wireless Smart Industry recently posted an article reviewing some statics provided by HMS that demonstrate the growth in wireless and Ethernet devices as the demand for connectivity continues to grow. In the article, Anders Hansson cites new big trends such as the Industrial IoT (IIoT) and Industry 4.0 as drivers behind the demand for more wireless devices. Here are some of the key statistics shared that demonstrate the demand and growth: Industrial Ethernet is growing faster than previous years with a 22 percent growth rate. Ethernet now makes up for 46 percent of the global market, compared to 38 percent last year. Wireless technologies are growing by 32 percent and now accounts for 6 percent of the total market. Fieldbuses are still the most widely used type of networks, with 48 percent of the market. Industrial Ethernet and wireless combined now account for more than half of the market at 52 percent. It will be interesting to see how the technology landscape is impacted by the deployment of more wireless technologies over time. How are you using wireless and/or Ethernet technology for your connectivity needs? Do you expect to use more wireless technology in the next six months to a year?

Energy and Excitement at DistribuTECH 2017

This week we attended DistribuTECH 2017 with several thousand of the leading minds in technology, education and innovation for utilities, Smart Grid and municipalities. We had many great conversations about the direction of Industrial IoT (IIoT) and the all-encompassing digital technology shift. At the FreeWave booth we led many demonstrations of our latest technology. We also shared how our fellow attendees can achieve smart data at the Edge. Here is a small snapshot of the excitement and action from the show: FreeWave at DistribuTECH We had a lot to share at DistribuTECH this year. In addition to providing product demos at our booth, we just launched several important company, product and partnership announcements. Here’s the run-down on what we launched this week: New IIoT Products & Two New Partnerships Introduced at DistribuTECH Zumlink Z9-C and Z9-T Radios: FreeWave introduced the Zumlink-Z9-PE last Fall, but now it brings the next generation, high performance platform to market. ZumLink is the underpinning of the company’s go-forward IIoT strategy for IIoT and embedded radio applications. The Z9-C and Z9-T deliver high speed Frequency Hopping Spread Spectrum (FHSS) functionality in a radio module that is half the size of a credit card. FreeWave and Systech application partnership: Together with Systech, we announced an industrial Tank Level Control application that resides on and executes from FreeWave’s ZumLink IIoT Programmable Radio for edge networks. The new application features an easy-to-use “ITTT (If This Then That)” process control programming interface that will control analog, digital and RS485 sensors linked to the ZumLink programmable radio.  The FreeWave ITTT App is designed for a user-friendly experience and requires no previous programming knowledge or practice. Technology partnership with E2E Technologies: E2E is a comprehensive solutions provider specializing in communication architecture design, implementation and network management. E2E’s Stingray Network Management System (NMS), supports the full array of FreeWave’s industry-leading wireless communication solutions and is optimizable for IT professionals looking to manage individual components of a limited IIoT or M2M communications system within a larger IT network management framework. The New FreeWave We officially unveiled a new look and website that reflects our move to the next generation of the industrial IoT: The Programmable Edge and Fog Computing. The new FreeWave visually projects our future-focused mission to help organizations around the world connect and gain valuable intelligence from devices – even in the most challenging of locations and conditions – anytime, anywhere in a secure, reliable fashion. This week has represented several major milestones for FreeWave, and launching it all at DistribuTECH was the perfect platform for sharing both our news and the future direction of FreeWave. What do you think about the new FreeWave website?

Industry 4.0 Top News Roundup

Industry 4.0, another term being batted around for the Industrial Internet of Things (IIoT) to explain the next-generation of industrial manufacturing and a new data exchange paradigm, is bleeding into multiple industry dialogues to describe the new landscape of how things are being made. With all the hype surrounding the idea of a “smart factory,” it seemed fitting to turn our attention towards highlighting our top news being reported on Industry 4.0. Industry 4.0: the urgency of data standardization By @Antoine_Rizk1 | Published on @ManufacturingGL “Sometimes presented as the new industrial revolution, Industry 4.0, primarily represents an advance in production means and practices. Characterized by interconnected machines and systems, it involves making production and supply chains smarter in order to improve efficiency in resource allocation and increase agility in production processes.”   Industrial Analytics Based On Internet Of Things Will Revolutionize Manufacturing By @LouisColumbus | Published on @Forbes “Industrial Analytics (IA) describes the collection, analysis and usage of data generated in industrial operations and throughout the entire product lifecycle, applicable to any company that is manufacturing and selling physical products. It involves traditional methods of data capture and statistical modeling. However, most of its future value will be enabled by advancements in connectivity (IoT) and improved methods for analyzing and interpreting data (Machine Learning).”   Drones will transform the way food is grown next year By @Harri8t | Published on @CNBC “Drones are transforming agriculture — giving farmers new tools to supervise crops and check on fields from the air — and 2017 will be be a pivotal year for adoption, say industry experts.”   US Manufacturers Too Slow to Adopt Industry 4.0: BCG Study By IW Staff | Published on @IndustryWeek “Nearly 90% of manufacturing leaders surveyed by BCG regarded adopting Industry 4.0 technologies as a way to improve productivity, but only about one in four see opportunities to use these advances to build new revenue streams. Many are pursuing isolated initiatives scattered throughout the company, BCG found in its new report, “Sprinting to Value in Industry 4.0,” without a clear vision and coordination from the top.”   Embracing ‘Industry 4.0’ By @alansmurray | Published on @FortuneMagazine “There’s a interesting new report out from BCG this morning on “Industry 4.0” – the German’s preferred term for how big data, cloud computing, sensors, advanced analytics, augmented reality and improved robotics are dramatically changing the world of manufacturing (known in GE-land as the “Industrial Internet”).” As we conclude another round of top news, we hope you were inspired and informed about the latest in Industry 4.0. It’s clear that business digitalization will only continue to add more technology, whether that be IoT, sensors, cloud computing and other solutions. Our job is to be ready and informed about how tomorrow’s technology could help enterprise digital transformation today.

Industrial IoT Weekly Highlights

It’s time for another edition of Industrial IoT (IIoT) weekly highlights! Robots seem to be taking over this round of updates – by air, land and sea. Don’t fret, we haven’t stepped into a Sci-Fi movie just yet. Aside from machines, we gathered the latest information about fog computing, and why this trending concept is needed in the enterprise. The possibilities for machine innovation spurs thinking that we are just scratching the surface of digital transformation. What will people think of next? Sit back, relax and get ready to enjoy another round of weekly IIoT highlights! Weekly Highlights Breakdown What Is Fog Computing? And Why It Matters In Our Big Data And IoT World By @BernardMarr | Published on @Forbes “Fog computing, also sometimes called edge computing, solves the problem by keeping data closer “to the ground,” so to speak, in local computers and devices, rather than routing everything through a central data center in the cloud.” Farm 2026: The Robots Are Coming By @hiyamckidd | Published on @FGInsight “Lettuce thinning is still done manually at lower cost, but robots are likely to reach break even with human labour within 12 years.”   Digital Technology to Transform Oil, Gas Hiring Practices By @KarenBoman | Published on @Rigzone “When oil and gas companies start hiring again, they will need to prepare for a workforce of college graduates who want to work off a cell phone or tablet.”   Manufacturers Struggle to Woo Software Developers By @AndrewTangel | Published on @WSJ “Nearly every industry is looking to hire software engineers and developers. But the manufacturing sector is having particular trouble attracting potential recruits.”   The 10 Coolest Drones at the Worlds Biggest Robot War Games By @David_Hambling | Published on @PopMech “Unmanned Warrior is the world’s biggest robot war game, currently taking place for two weeks off the coast of Scotland. It was proposed by First Sea Lord Admiral George Zambellas to give airborne, surface, and underwater drones from various suppliers a chance to show off their prowess. Unmanned Warrior is part of Joint Warrior, an exercise involving 30 warships and submarines from 18 nations. But for the newly inaugurated robot portion, the U.S. is a strong presence, with teams from the Office of Naval Research (ONR).”   As we conclude our Industrial IoT weekly highlights, we hope you were entertained and enlightened. Technology continues to change at a fast pace, let’s find common ground with our robotic pals. Tune in next time for more IoT innovation!

IoT Evolution Podcast Recap: Edge Computing Future

Edge computing has become a topic of hot conversation as the technology capable of supporting sensor-2-server data transport has matured. The realization of true edge computing is accompanied by a host of benefits, including real-time data transmission, maintenance needs and considerable savings for operational expenses. Is edge computing the cut-and-dry future? Ken Briodagh, editorial director with IoT Evolution, plays devil’s advocate on a recent podcast with FreeWave Technologies CMO Scott Allen. He asks, essentially, “If companies focus resources on the real-time data transport at the edge – sending small packages of data at a time in the interest of speed – are we losing the benefits of big data? Do we lose the information that big data sets can provide in terms of predictive analytics and, ultimately, machine learning if we discard bits and pieces of data at the edge that we’ve deemed irrelevant?” Listen to the podcast below for Allen’s response! Overall, edge computing has three main drivers: latency–our need to have the data in milliseconds; loss of communication–able to solve the factory problem without shutting down the entire plant; proximity–sensors in the field monitor the data back to the edge. Edge Computing Solution Depending on the industry, a mixed bag of both programmable and edge computing solutions is an answer to Briodagh’s question. In some cases, especially with the oil and gas industry, companies rely on a sensor-2-server stream of communication, where they need to have the information in real-time, and if there is a problem, be able to act locally and fix the issue before anything drastic happens. The network is a combination of radios communicating with sensors that pass the data to a gateway and up to a cloud system. The network uses only small data sets to transmit a continuous flow of intelligent, sensor-based information, optimizing bandwidth in situations where latency is crucial. Next for the Edge There will come a time when using edge technology will just become a regular line item expense needed to do business in this modern age. Some early adopters have already started using gateway systems as a cookie cutter roll-out for all future expansions. Many worry the cost of entry is still too high to integrate, even though the need for transmission is great. As our digital age grows, infrastructure complexity and the desire to implement the latest technology grow along with it. Altogether, edge computing is still in its infancy stage, so no one really knows what data  we deem irrelevant today will be vital tomorrow.