Where is RF Technology for Oil and Gas Headed?
The entire landscape of the oil and gas industry is changing. Not only has the industry downturn forced operators to rethink their business models, but the RF technology supporting industry operations is quickly changing. It is more important than ever to make intelligent business decisions with the right technology in place. As a decision maker for your organization, you need to be aware of the technology that is pointing towards the future of automation and RF technology. Challenge yourself to think beyond basic command and control and picture a fully connected network – from Sensor-2-Server. Here’s a quick snapshot of the technology movement we are seeing in the oil and gas industry right now: The installed base of wireless Machine-to-Machine (M2M) devices is growing. More technology in the field allows operators to access more data from more sensor access points – on a grander scale than ever before. The ability to leverage Big Data supports intelligent decisions that will optimize business operations and cut down on expenses. The Industrial Internet of Things (IIoT) is the future of communication technology. With IIoT, data can be transported from its collection point to wherever it needs to go – anywhere in the network. This has sparked a convergence of OT and IT operations, driving RF technology networks closer to the concept of complete connectivity. With a fully connected network, decisions are made based on comprehensive data, which drives intelligent problem-solving. With that type of insight, you could better disperse your resources, leaving a positive impact on the organization for years to come. Sensor-2-Server (S2S) solutions that deliver intelligence to the access layer are critical to industry success. S2S solutions bring intelligence to the access layer, enabling edge devices to do more than simply transmit data. They support highly detailed data analysis such as predictive analytics. Imagine the operational decisions you could make with a complete set of data from the outermost edge of your network all the way back to the server. IoT App development is the next big thing. Programmable third-party applications are on the horizon of the wireless RF solutions market. These apps will support machine learning, distributed intelligence, predictive maintenance, and more at the edge of the network. Technology is being designed to enable these applications – which have the potential to lead the industry to the next frontier of RF technology.
IoT Top News: Distribution Intelligence
According to the U.S. Department of Energy, distribution intelligence refers to the part of the smart grid that addresses utility distribution systems – meaning the wires, switches and transformers connecting the utility substation to both the utility company and the end customer. These systems are designed to drastically improve the demand response times and overall efficiency of transferring electric power, thus enabling a fully controllable and flexible distribution system and giving field technicians the actionable knowledge to troubleshoot problem areas faster. As utility providers continue to move towards a digital and connected enterprise, the prospect of a self-healing power distribution system becomes extremely valuable – especially as electric power consumption continues to rise globally. That’s way this week’s round up is dedicated to distributing intelligence across one of the most mission-critical infrastructures on the planet – the power grid. State of Distribution Intelligence, per a Recent Smart Grid Report A smart grid survey of 70 U.S electric cooperatives found that, regardless of the challenges most have found a way to start incorporating smart grid technology across the board. Zpryme and the Rural Smart Grid Summit (RSGS) report that, “Nearly all electric cooperatives have some sort of smart grid effort. Many are at thestage of deploying multiple applications (31%) up from 21% last year. Pilot projects are also growing from 8% last year to 16% this year.” We Now Have Hourly Data on the US Power Distribution System The U.S. Energy Information Administration (US EIA) can now collect data on electric supply, demand and flows on an hourly basis. CleanTechnica informs us that, “EIA’s U.S. Electric System Operating Data tool provides nearly real-time demand data, plus analysis and visualizations of hourly, daily, and weekly electricity supply and demand on a national and regional level for all of the 66 electric system balancing authoritiesthat make up the U.S. electric grid.” Distribution Intelligence Starts with Proper Training India’s National Smart Grid Mission (NSGM) with USAID announced they will begin a series of utility personnel training programs designed to help educate workers on smart grid functionality and design. The Business Standard revealed, “The government has taken several proactive steps towards grid modernization, including the establishment of a Smart Grid Mission to plan and monitor the implementation of policies and programs related to Smart Grid activities in India.” Cyber Attack Vulnerability in the Power Grid? We have all heard about a few of the big cyber attacks that have affected some big companies, but many don’t realize an attack on the electrical infrastructure could be crippling to our society. The Energy Collective unveiled a quiz to dispel some myths about the state of cybersecurity in the power grid. “Minimizing the risk is not just about training a network IT team. It’s about running a comprehensive and continuous scan of operational technology (OT)—the programmable logic controllers, the mobile devices, the supervisory control and data acquisition systems (SCADA), etc.—and then coordinating OT and IT teams with risk officers and crisis management experts to form a cohesive front capable of responding to an industrial cyber incident.” Perhaps the notion of distribution intelligence systems can help address and alleviate some of these concerns. Most utilities are only starting on the road to true distribution intelligence, but the market is expected to boom in the coming years. With the advent of industrial IoT technologies and new regulatory factors, we could realize distribution intelligence in our power grid sooner than later. I hope you have enjoyed our weekly round up on distribution intelligence, and please be sure to leave your comments and questions below. BONUS ARTICLE The round up above is all about the smart grid and how to make it more efficient and resilient. Ever hear of a smart city? Smart cities are connected cities, and they work in conjunction with everything from IoT sensors to open data collection and smart streetlights to provide better services and better communication. Teena Maddox from Tech Republic wrote a great round up piece on six essential technologies that make the smart city of the future a reality today. Give it a read!
Drone World: Applying IIoT Applications
“Drone World” may seem a bit overboard, but the fact is, drones are here to stay. We’ve spent time in these pages looking at unique and innovative drone applications in industries like utilities, precision agriculture, and even lifeguarding. Today, in honor of Memorial Day, we would like to take a moment and honor those men and women serving in the armed forces, by highlighting interesting government drone technology uses. Drones ‘Shot Into The Sky’ By The U.S. Navy The BBC News informs us how these innovative instant flight drones could be used as a method of defense for ships at sea suddenly burdened by a swarm of enemy drones. This project is known as LOCUST and it aims to launch a swarm of drones at high speed. Elizabeth Quintana from the military think tank Rusi believes that, “Drones could be used to take out enemy swarms at sea.” Drones That Can Sniff Out Radiation The Nevada National Security Site (NNSS) officials have recently purchased two drones to be a view from the sky in case of an emergency to sniff out and detect signs of radiation. It will be important to use these unmanned aerial systems (UAS) in situations that are to dangerous for humans. Other Applications of Drones Drones aren’t just for the government anymore, in fact we are already starting to see the industries below finding ways to improve safety, service and efficiency with the implementation of drones. Emergency Response Enables immediate action, providing emergency response teams with fast, flexible visibility to assess critical situations. Utilities Safely allows for the quick inspection of high voltage power lines and wind turbines, helping mitigate worker risk and improve monitoring. Military & Defense Assisting with intelligent surveillance and reconnaissance missions to deliver timely, relevant, and assured information to thwart potential threats. Oil & Gas Protects and helps maintain extensive miles of pipeline covering large, remote areas that would otherwise require enormous amounts of time and resources. Agriculture Creates more efficient farms by monitoring inventory, growth, water and fertilizer levels, and crop health to facilitate production and increase yields. Public Safety Supporting firefighting operations by providing more up-to-date information at a lower cost, while reducing the number of responders in harm’s way. We hope you have enjoyed our quick drone world recap, and as always tell us what we missed. The next time you see a drone flying in the sky, think about all the possibilities that drone or fleet of drones could be providing.
Digital Oil: Wireless Means Safety & Efficiency
Production demands of the 21st-Century change at an extraordinary pace. Industrial markets, such as energy and oil & gas face challenges going forward, including the reliable monitoring of assets in the field, dealing with 24×7 production demands, and managing high costs in terms of both time and resources to manage assets in remote locations. These market forces have naturally led to the emergence of the industrial internet of things (IIoT) and wireless communications technology. If you’re an operator in the field, you’re well aware that wireless IoT technology is changing the level of safety, efficiency and monitoring available on the rigs. Let’s take a moment and look closer at how these changes are impacting the digital oil field of today. Why? The consequences of incidents, such as natural gas pipeline explosions, have contributed to the demand for more safety and monitoring regulations along pipelines. California for example, saw tightened state regulations as a result of the San Bruno disaster, which included more stringent requirements for pipeline monitoring. Across industries such as oil and gas, there are certainly areas with the presence of hazardous gasses and therefore potentially dangerous environments. Safety First Taking a closer look at safety on an oil field, we realize just how dangerous it can be for people to be on or even near a production site. Advancements in IoT are now more important than ever because they allow more oil and gas companies to enable a digital work environment – not just from an operational perspective, but from a worker health and safety point of view. Safety concerns to be addressed are the elimination of manually painstaking tasks related to checking on-site sensor data or heavy machinery that resides in potentially hazardous environments – for example where explosive gases are present. Safety is now being increased by taking away the pen and pad from the technician and automating wireless remote monitoring capabilities to enter readings, pressures, temperature and other production monitoring values from miles away. Because of this evolution, many technicians have updated their skills in order to provide value in a digital age and the skills gap here is also an emerging issue for energy producers to keep in mind. Jens Norgaard, SafeEx Business Development Director reports that, “There is no doubt that the younger generation…are running around with high tech equipment…and it’s much more sexy using an electronic tool than using pen and paper. Most technicians have taken a technical education because they want to use their hands and are not always very keen on doing administrative work. So if you can reduce the amount of that it will become much more attractive for younger people to do it.” Highly Efficient and Operational The hope with any advancement in technology is that our world will be able to run and function more smoothly. According to LR Energy’s annual 2015-2016 Oil & Gas Technology Radar survey of global oil and gas executives, “the top driver of innovation investment is operational efficiency.” As wireless IoT solutions continue to infiltrate the oil rigs and pads of today, it is only natural to question the operational and efficiency state of things. Over the next decade technological implementations are expected take more people off the drill floor and into the office allowing companies to fill the knowledge gap with remote drill sites, thus paving the way for more automated oil fields. Pierre Sames, DNV GL director of research and innovation in Norway suggests that, “These technologies will help the industry to be more cost efficient in operations, which is very much needed due to the current oil price crisis.” Keeping Production High with High-Tech Whether you are working with an offshore or onshore rig, the ability to seamlessly monitor and control the operations of a oil rig or well pad automatically from an office location is a key component of IoT and an evolution of the digital oilfield. Natural Gas Intel (NGI) informs us that, “One of the most anticipated technologies, automated drilling in the offshore and onshore, could reduce drilling times and costs by up to one-third versus conventional drilling rigs, ensuring more wells are economically feasible, able to hit smaller targets and generating more infill production.” It seems apparent that we are on the midst of an industrial revolution where blended technology ecosystems are going to be the core of what makes modern energy producers competitive. Just think of the combination that Voice, Video, Sensors and Data can have if applied together in a holistic fashion. “Expectations of fully automated drilling operations, autonomous pipeline inspections and the expanded use of natural gas to fuel trucks and railways are likely to be at the forefront by 2025,” industry consultant DNV GL said last month (see Daily GPI, April 6). By 2025, the energy industry will become increasingly “automated, digital and smarter,” according to DNV’s Technology Outlook 2025. What’s next for the oil and gas industry? Join us this week at the 91st International School of Hydrocarbon Measurements(ISHM) conference in Oklahoma. ISHM is designed to educate and update you on the latest technological advancements for the oil and gas industry. This year you will have an opportunity learn with both lecture and hands-on classes as well as network with fellow industry peers. Cannot join us in Oklahoma? Feel free to download the “Building the Digital Oilfield of the Future” white paper for insights into how wireless IoT technology is redefining oil field production and data communications.
IIoT Top News: Industrialized
As machines are increasingly connected to the internet, it’s becoming easier to discover the numerous ways Industrial IoT (IIoT) is helping to shape the business world. This is exactly why we have decided to take a closer look at this pervasive movement and to examine the desire to connect more things! Now if you need a refresher on IIoT and how it is changing the world, take a moment and listen to Greg Gorbach with ARC Advisory Group. Gorbach believes, “IIoT will significantly change the world. You won’t participate with conventional thinking and an incremental approach.” So, you understand some of the ways IIoT will vastly improve how businesses function. But did you realize IIoT is more than just connected devices and smart machines? George Deeb with Forbes reminds us that IIoT impacts manufacturing, energy, oil and gas, healthcare, IT and much more. Deeb reports that, “Gartner predicts the IoT industry to be $1.9TN in size by 2020, and McKinsey thinks it could be as large as $6.2TN by 2025, in terms of economic impact.” Are we ready for it? Although the industry has excepted the new buzzword “IIoT” we still need to make sure the equipment and software are able to interact together or we are just adding more problems to the mix. Maria Ferrante at Packing World informs us that, “The Industrial Internet of Things has moved into the pantheon of 21st-century packaging buzzwords alongside RFID and Sustainability.” Alright! So how is IIoT changing the oil and gas industry? The Oil and Gas industry has seen an increase demand for more of wireless cloud IIoT technology and M2M solutions as the price of a barrel of oil dips down to a new all time low. Live Mint reminds us that, “Oil and gas companies are increasingly leveraging cloud technologies to more rapidly unlock the value of other digital technologies—especially analytics, IoT and mobility.” That’s all for this week’s recap, but there’s more! Now that we are into the beginning of Spring, it’s important to see how some of the 2016 IIoT predictions are shaping up. In case you have any thoughts on our IIoT predictions for 2016 (or have any new predictions your own), it’s not too late to iterate on them into the comments section below!
IWCE 2016: What to expect next week?
The International Wireless Communications Expo (IWCE), is an annual event for communication technology professionals working globally in a broad range of the communications field, including energy, utilities, emergency response and municipality/infrastructure. This conference will get under way next week, from March 21-25, in Las Vegas. An estimated 7,000 individual industry experts are expected to attend from government/military; public safety (law enforcement, fire service and first responders); utility, transportation and business enterprise. IWCE will also feature around 370 exhibitors ready to show you the latest product innovations and trends forecasted this coming year. Donny Jackson editor of Urgent Communications, the official tradeshow media partner, believes that this year’s IWCE will give industry professionals a chance to get educated about the latest critical-communications technology, all while making key network contacts with industry experts. So, what else can we look forward to? IWCE promises to offer engaging content–with their 5-day comprehensive conference program; more quality time with peers; industry experts providing the latest strategies and tactics; minimal expenses–when you take advantage of conference discounts; structured networking opportunities; tangible handouts you can use throughout the year; more face-to-face learning time and more educational opportunities will be available this year. Excitement is building! Here are just a few of the people and organizations excited for next week’s event! Tune in next week for our IWCE insider recaps. Vegas here we come!
Difference Between Data Sheet Transmit Power & Data Stream Transmit Power
Image courtesy of Flickr Creative Commons You need to link a two production sites together in your IIoT network in order to move critical voice, video, data and sensor data (VVDS™) between the sites by deploying access points. So, you consider using industrial Wi-Fi Access Points to implement this short-haul, point-to-point (PTP) RF link between the two sites. Short-haul RF links out to 8 miles are very doable using industrial Wi-Fi Access Points with directional antennas. You evaluate potential Wi-Fi Access Points from their data sheet specs. This is given, and you select one. Now, there is one specification that is commonly misunderstood and leads to confusion when evaluating MIMO capable Wi-Fi Access Points and using them in either PTP or point-to-multipoint (PMP) IIoT networks as wireless infrastructure. Confusion and mistakes arise from the difference between the transmit power stated on the product data sheet and the transmit power of a single MIMO data stream of the Access Point. For example, a 3×3 MIMO Access Point data sheet states the transmit power is 27dBm for MCS4/12/20 data encoding in either the 2.4 or 5GHz band. This is typical, and not a surprise, but what is this transmit power really stating. The FCC limits and regulates maximum transmit power from an intentional emitter, e.g. Wi-Fi Access Points. For Wi-Fi devices, the limits apply to the aggregate transmit power of the device. In above product spec example, the transmit power stated is the aggregate transmit power for the 3 MIMO data streams. Still good? Yes. You have a Wi-Fi Access Point and the total transmit power is 27dBm. Now, you design your short-haul PTP link using Wi-Fi Access Points and directional antennas. What transmit power do you use in your RF link budget? 27dBm since it is the transmit power for the Access Point for the data encoding and the band you plan to use. Right? No. While 27dBm is the total aggregate transmit power for the Access Point, it is not the transmit power of an individual data stream. The individual data stream transmit power is roughly 5dB less than the aggregate transmit power found in the data sheet for a 3×3 MIMO product. Difference in Transmit Power versus Aggregate Power 1 Data Stream transmitting at 22dBm — Aggregate Transmit Power is 22dBm 2 Data Streams transmitting at 22dBm — Aggregate Transmit Power is 25dBm 3 Data Streams transmitting at 22dBm — Aggregate Transmit Power is 27dBm So here it is… If you use the transmit power from the data sheet in your RF link calculation without correction, your actual link distance will be approximately half what you expect for the planned fade margin or the link reliability will be less than what you expect for the planned link distance. When designing RF links for the IIoT networks, make certain you are using the correct transmit power in your RF link budget calculations.
DistribuTECH Day 3 Recap: Utilities-as-a-Service?
We’ve wrapped up another year at DistribuTECH, and we’re leaving Orlando feeling invigorated and excited about the industry