The Whats and Hows of the Ultimate Dashboard for Industrial IoT

The Whats and Hows of the Ultimate Dashboard for Industrial IoT

If you use the internet of things (IoT) devices to monitor or automate certain business operations, you may be wondering what to make of all the data those devices generate. Collectively, IoT devices across the globe will generate almost 80 zettabytes of data by 2025, according to International Data Corporation (IDC) projections. A zettabyte equals a trillion gigabytes. In layman’s terms, we’re talking about oodles and scads and gobs of data. At the business level, data collected from IoT-enabled devices could conceivably be entered into a spreadsheet, but data presented in this manner becomes overwhelming and even incomprehensible. A much better way to store and make sense of your data comes in the form of an IoT dashboard, which visually represents relevant data in such a way that you gain at-a-glance, actionable insights regarding your operations. An effective IoT dashboard allows you to make data-driven decisions to optimize efficiencies, troubleshoot problems, and make other adjustments and improvements that could potentially impact profit margins. Dashboard Design and the KISS Principle — Keep it Simple, Stupid Think about the dashboard display in your car. It doesn’t show you everything there is to know about the vehicle. Imagine how overwhelmed and distracted you would feel if it presented you with minutiae such as the condition of your tire tread, how many cubic inches of trunk space you’re using, the precise amount of antifreeze you have, the decibel level you top out at when singing along with the radio, and so on, ad nauseam. All this information crammed onto your dashboard would make it difficult for you to drive and make important, time-sensitive decisions, like when to stop for gas. That’s why the dashboard display is limited to what you need to know to drive safely and efficiently: How much fuel do you have? How fast are you going? How many miles per gallon are you getting? A well-designed IoT dashboard also only shows you data that you’ve prioritized in accordance with your business objectives, with the ability to pull up additional data points as desired. A well-designed dashboard prompts you to a view of data sets that you can select, creating an unfussy, easy to understand, and up-to-the-minute snapshot of in-field device and system-level performance.  Effective Dashboard Design — It All Starts with You When it comes to selecting the best IoT dashboard for your organization, the first step is to define your business goals. Before requesting demos or engaging an IoT dashboard vendor, identify what you want to learn and achieve with the data you collect. Your business goals will determine the dashboard design you choose, as well as the type of data and performance indicators you need to track to meet your goals.  For example, if your business goal is to improve the efficiency of your manufacturing process, you might want to track equipment downtime, production output, and raw material usage. Another scenario might be an oil and gas company wanting to track  performance by optimizing existing wells, improving oil recovery, and minimizing its carbon footprint or emissions.  Having defined your business goals, you can then determine which metrics matter most and how best to display them to facilitate decision making. Then, you can look for a dashboard that has the necessary features and functionalities to help you meet your business objectives. Dashboard Deliverables — What You Should Look for When Evaluating Your Options    IDC estimates there will be 55.7 billion connected IoT devices by 2025. The IoT dashboard and platform market, though still quite young, is growing exponentially. With an ever-increasing number of options, choosing which vendor and product will best support your business goals can be as easy as working with a leading IoT network provider. We will discuss what to look for when considering your options, after a brief clarification of terms.    You may hear the words dashboard and platform used interchangeably, so think of the dashboard as the user interface within an IoT platform that allows you to interact with your connected devices. The dashboard is both a control panel and a visual representation of key data your IoT devices collect. The platform is the dashboard’s pre-built foundation. Platform-based dashboards are typically more practical than out-of-the-box dashboard solutions, provided the platform is well-engineered. And a well-built platform is, first and foremost, generic. A Solid Generic Framework with Customizable Features and Functionalities In the case of information technology platforms, “generic,” ironically, is a positive descriptor, synonymous with user-friendliness and adaptability. Generic IoT platforms allow for customization, and FreeWave’s data platform comes with an array of templates and widgets that allow you to create a custom dashboard almost as easily as snapping together those beloved Lego® building blocks from your youth. The lesson here is the less “generic” the platform, the greater the likelihood you’ll need to hire someone to configure your initial dashboard and reconfigure it time and again as your business strategy evolves. Effective dashboards are intuitive and interactive. They are not a data dump, but rather convey information hierarchically through charts and other data visualizations, enabling you to extract actionable insights, receive alerts, identify patterns and trends, make projections, and run various scenarios with the aid of built-in analytics and machine learning. If you want to dive deeper into your data, interactive drill-down and click-to-filter features guide you through multilayer displays. You by no means have to be a programmer to design an effective IoT dashboard, but if you need a little extra assistance, look to an IoT platform provider for help. As a convenience to customers, FreeWave is enhancing its distribution network with specialists trained to assist in defining your user interface, in accordance with your business goals.  Decision-making Support Through Data Storytelling Designing an industrial IoT dashboard begins by defining what data you want to see and why. It’s an involved process, but the end result should be a simple data story, with key takeaways highlighted. Once you’ve created your ultimate IoT dashboard, you’ll gain a competitive edge for your organization as the intelligence embedded

IoT and the Carbon Market: How Data Can Help Drive Decarbonization

IoT and the Carbon Market- How Data Can Help Drive Decarbonization

Let’s set the stage for what greenhouse gasses are by using a familiar scenario. You’re walking  in a greenhouse. That warm, damp air that you feel on your skin and the additional sunlight that  warms the space likens it to  a 24/7 hot yoga session for plants. That, in a simple example, is the greenhouse gas effect.  Now, take that greenhouse and expand it to the size of the planet. Imagine the world as one large terrarium with man-made greenhouse gasses (GHGs) trapping heat in the atmosphere. The impact, according to the United Nations Environment Programme (UNEP) Emissions Gap Report, is measurable and critically damaging to life on planet earth.  Global temperatures are expected to rise at least 2.7C this century. The report goes on to say that GHGs need to be halved by 2030 to avoid a climate catastrophe.  According to the Environmental Protection Agency (EPA), one of the leading GHGs is carbon dioxide (CO2), which accounts for 79% of all GHGs from human activities. Reducing CO2 (or decarbonization) is critical. The EPA points out that carbon emissions alter climate patterns and that “human health, agriculture, water resources, forests, wildlife, and coastal areas are all vulnerable to climate change.” Fortunately, data available from Internet of Things (IoT) technology can help accelerate decarbonization efforts as explained, in part, below.  The Intersection of IoT and Carbon Markets As the world faces the challenge of reducing GHG emissions, industries are turning to regulated carbon credit markets and voluntary carbon offset markets to help them shrink their carbon footprints. Carbon markets — where carbon credits and offsets are sold and bought, similar to commodity futures like grain — provide a way for industries to compensate for unavoidable emissions by investing in certified projects that reduce or remove carbon dioxide from the atmosphere. These projects mitigate the environmental impacts of industrial operations while helping organizations work toward net-zero commitments and environmental, social, and governance (ESG) reporting goals. Carbon credit markets create accountability. Along with international pacts to drastically lower GHG emissions, consumer demand to reduce environmental harm is spurring carbon market growth. This demand is driven by deep-seated concerns that are literally keeping Americans up at night. A new survey from the American Academy of Sleep Medicine (AASM) reveals that one-third of adults (32%) “always or often” lose sleep due to worries about environmental issues. Investing in carbon offset projects shows that an organization’s commitment to combat climate change goes beyond lip service. A worldwide awareness of climate change could be one reason companies are taking note. The voluntary carbon market recently exceeded $1 billion in global value and could surpass $30 billion in annual value by the end of the decade, according to a Bain & Company report. While investments are clearly on the rise, “the carbon market has reached a crossroads,” the report states. That’s because carbon markets today are built largely on trust — and as it turns out, that trust is tenuous.   Enter the critical role of data. Verification methods for carbon offsetting lack uniformity, which raises uncertainties about the fair market value of credits as well as doubts about the efficacy of the projects they fund. As a result, many organizations that need carbon offsets to meet their net-zero commitments have nevertheless chosen not to buy them. For carbon markets to achieve their potential, reliable emissions measurements and data are needed for valuation and verification.  “Zero Trust” Begets Absolute Trust Leveraging IoT technology consisting of sensors, network configurations, and cloud-based analytics can significantly improve the accuracy, reliability, and scalability of the carbon offset verification process. That’s where FreeWave comes in and its partnership with Inmarsat to provide global coverage, collecting IoT sensor data from anywhere and transporting it to the cloud for analysis and action. The FreeWave platform has reputable third-party auditors who analyze data to confirm the efficacy of certified carbon offsetting projects. For example, in a reforestation project, auditors can accurately measure and convey to offset buyers how much carbon is being sequestered, and it won’t be long before buyers, through a dashboard, can track these measurements themselves and compare them against a projected scenario of how many tons of carbon emissions would have occurred were it not for the project. Using incontrovertible metrics to assess project performance increases investor confidence, while sellers can ensure that their credits are backed by measurable emissions reductions. This could ultimately help move the voluntary carbon market toward a more transparent, zero-trust model. When there’s absolute trust in carbon market performance, the value of carbon offsets will increase. That’s good news for industries like smart agriculture that can potentially capture more carbon than they produce, enabling them to sell offsets as an additional revenue stream. Beyond Carbon Markets — Sustainability Best Practices Carbon offsetting is part of a holistic sustainability plan that starts with reducing the use of fossil fuels and pollutants, taking carbon reduction efforts as far as possible before offsetting any remaining emissions. Here, too, IoT and FreeWave come into play, deploying technologies that improve operational efficiency while protecting and conserving natural resources.  Growers, for example, can use sensor data to optimize efficiency for irrigation and fertilization programs. IoT data allows agriculture and other industries to monitor and manage their environmental impact. It also gives them data-based ESG impact reports that they can use to their competitive advantage — and to discredit accusations of greenwashing (exaggerated claims of environmental practices). Most business leaders (76 percent) in major industries doubt their peers’ ESG reporting, according to recent research by satellite solutions provider Inmarsat.  Beyond the environmental and humanitarian imperatives, investing in climate-smart IoT technologies can be part of a long-term revenue enhancement strategy. We at FreeWave believe that products that are verifiably carbon-neutral will warrant premium pricing in the eyes of environmentally conscious consumers, just as produce grown organically commands a higher price. The Journey to Net-Zero  Most business leaders believe that data collected via IoT solutions is critical to building trust (81 percent) and improving ESG outcomes overall

Satellite Connectivity Becomes Next-Generation Tech for Remote Operations

Satellite Connectivity Becomes Next-Generation Tech for Remote Operations

The future of IIoT connectivity is up in the air — literally. Space is the new frontier for IIoT connectivity, as satellite connectivity is fast becoming the networking solution of choice for many industrial use cases.  IIoT, or the industrial internet of things, refers to an ever-expanding ecosystem of sensors, networking equipment, and analytics, which work together to collect, transmit, and analyze data from “things” used in industrial operations. Data transmissions from industrial assets help guide business decisions or automatically trigger actions. For example, in agriculture, IIoT-enabled irrigation systems monitor soil moisture levels, weather forecasts, and other data points to help growers determine the best time to water, or the IIoT solution can automatically activate sprinklers without human intervention if programmed to do so. When talking about satellite, this two-way communication reveals the next-generation tech for remote operations. First, though, let’s take a quick glance back. What Satellite Connectivity Means for People in Remote Areas FreeWave started by helping customers transmit mission-critical data using radio technology in 1993. We’ve seen the evolution of communications since then, with not only our rugged wireless radios continuing to serve the future of the oil and gas industry, but also the advancement of satellite for people leading remote operations. Traditionally, IIoT has mostly relied on cellular connectivity and other terrestrial solutions for data transmission, but as IIoT continues its push into underserved locations — from remote grazing pastures in Colorado to offshore oil platforms in the Pacific Ocean — cellular solutions pose some serious limitations. Connecting people, not things, is the foundational purpose of cellular infrastructure development, so in sparsely populated or remote areas, cellular service may be limited or even surprisingly unavailable. While other non-cellular connectivity solutions exist, for certain circumstances, satellite is becoming a more viable solution, offering distinct advantages. Competition is driving rapid innovation in the IIoT satellite space even as it drives down costs. As a result, companies that previously encountered lack-of-coverage or cost barriers with the various terrestrial networking options now have an affordable IIoT connectivity solution in the form of satellite — with cost savings between four and 20 times what they once might have paid. Satellite connections are, by definition, wireless and don’t require remote operators to install fixed lines — DSL lines or coaxial cable — for data transmission. This added flexibility gives companies the freedom to scale their IIoT applications quickly and easily as their needs and business goals evolve. For example, a major agriculture company with an expanding customer base in remote parts of Brazil, Argentina, and Chile announced it will use satellite connectivity to operate autonomously driven tractors in those countries. In these remote areas with no cellular or Wi-Fi coverage, real-time communication through satellite connectivity allows farmers to stop and start the tractors and other unmanned equipment, monitor the equipment’s performance, and determine what to do when a tractor encounters an obstacle — all through an app-based control panel from afar. Meet LEO and GEO Not all satellites are created equal, however. There are three common satellite types:  Low Earth Orbit (LEO) satellites, Medium Earth Orbit (MEO) satellites, and Geostationary Equatorial Orbit (GEO) satellites. LEO and GEO represent the two altitudinal extremes and are most commonly used for IIoT connectivity. LEO satellites are smaller and orbit closer to the earth, so launching them is less expensive. LEO satellites circle the earth several times a day, so multiples are needed to fly in succession over the target geographic area in order to provide consistent coverage and avoid dataflow disruptions. The ground equipment needed to monitor and maintain LEO satellite constellations is also extensive. GEO satellites — a type of geosynchronous orbit (GSO) satellite — also orbit the earth, but they do so along the equator in the same direction and at the same rate the earth is spinning. Hence, from our vantage point, a GEO satellite looks like it’s standing still since it is always above the same location. Its daily orbit notwithstanding, a GEO satellite, for all intents and purposes, stays “parked” above the area that needs coverage. Since GEO satellites are continuously visible, ground station tracking is not required, and their greater height offers substantially more geographic coverage; in fact, only three GEO satellites can provide whole-earth coverage. LEO satellites and GEO satellites both have their place in IIoT connectivity. With less distance for signals to travel, LEO satellite solutions historically have offered lower latency rates and higher bandwidth capabilities, although newer GEO satellite solutions offer these capabilities now, as well, with a signal-bounce delay of about one-quarter of a second. The end user’s needs, business goals, and budget will determine which IIoT satellite solution is best. We’re seeing an increasing need for two key requirements for satellite connectivity — real-time or near real-time data transmission and two-way communications. Can Satellite Connectivity for Remote Operations Minimize the Impact of Catastrophes? Environmental catastrophes happen more frequently than we are even aware. Being able to positively impact a critical issue before it happens is certainly the goal of many. IIoT and its network-connected sensors and dataflow provides the catalyst for alarming and alerting to help alleviate the impacts of disastrous situations whether they be natural phenomenon, human error, or otherwise created. FreeWave has expanded our footprint in the environmental space, helping customers deploy early-detection IIoT sensors that alert the appropriate personnel in the event of a disaster. Let’s take the case of a timber company using sensors to detect lightning strikes or approaching wildfires. Strategically placed sensors are programmed to detect various gas profiles indicative of those events. A delayed alert could spell disaster, so real-time notifications are of paramount importance. The same is true for oil and gas companies that receive alerts before a catastrophic equipment malfunction—real-time alerts to what’s happening in the field could save millions of dollars and prevent environmental devastation and other ramifications. One-way and Two-way Satellite Communications In many use cases, two-way communication is needed to optimize industrial operations. Some IIoT connectivity solutions only transmit data one way, from the

2023 and Beyond: A Visionary Q&A with FreeWave

2023 and Beyond- A Visionary Q&A with FreeWave

With fresh insight and excitement for the year ahead, the FreeWave leadership team discusses their vision for the future, predictions about the evolution of data, and collective approach to protecting life’s essentials.  Though you might not find their names in the next Marvel film or DC comic book, industrial leaders – whether in agriculture, energy, utilities, or another resource industry – are the heroes of the modern world, real-life Guardians of the Galaxy, if you will. These heroes fight today’s challenges every day, while life’s essentials like food, air, energy, and water are threatened daily. With technology at the ready, industrial operators continue to come to the rescue, finding innovative solutions to defend the planet and preserve its most precious resources. At FreeWave, our goal is to continually build upon technology advancements to help you build a better world within your industry. With 2023 right around the corner, we asked four of FreeWave’s senior leaders, including Kirk Byles (CEO), Michael Tate (COO), Parthesh Shastri (CTO), and Jeff Horton (CRO) to share their thoughts on how FreeWave Technologies is helping the heroes of today protect life’s essentials to create a better tomorrow. ___________________________________________________________________ Q: What is one of your favorite FreeWave memories from this past year? Kirk Byles: It’s hard to even remember before this quarter, but the Reinke Dealer Conference was definitely a top highlight for me this year. Not only did it show the work our collective teams have been doing to build relationships and finalize a new product offering, but it was also really cool to see the impact our work is having in real-time, as we partner with Reinke – one of the largest pivot irrigation manufacturers in the world – to help growers and producers save water and raise crops. This was really big. Parthesh Shastri: This year, we really came together across disciplines within FreeWave, too, increasing our focus on target outcomes to deliver products that our customers use and deploy in the field, and we had a lot of fun while doing it! As we look at 2023, we are excited to scale this model and implement it across new industries. Q: How is FreeWave helping industrial operators protect life’s essentials?   Jeff Horton: The top thing that comes to my mind is bringing automation to irrigation. We work closely with our partners, like Reinke, to provide real-time analytics, which saves a lot of water and nutrients, and both of these things are invaluable for farmers. Technology also helps to reduce fuel consumption on ranches by eliminating the need to manually check cattle watering tanks. Some producers often spend 12 to 15 hours a week driving around just to look at their water tanks. Think about the wear and tear on those pickup trucks or even the rising cost of fuel. Being able to reduce greenhouse gas and save these guys money while also producing a high return on investment is a really big deal. We can do that easily with the Tank Level Monitor. Mike Tate: And it’s not just the ROI. These producers are suffering. Ranching is not the lucrative business that it once was, and these ranchers are getting beaten at every turn. A lactating cow needs one gallon of water for every hundred pounds, every six hours! Water is a huge concern for both producers and growers, and being able to give them back more time while reducing their expenses is a great value add because every dollar counts for them. Q: Is the word “efficiency” changing for industrial operators?  Jeff: When you look at conditions today, both here in the United States and globally, you see so many labor shortages, droughts, inflation, and climate changes, and it’s forcing efficiency, not for efficiency’s sake, but for sustainability and survivability. Businesses have to fundamentally change the way they produce a product, and they have to find the least expensive, most efficient path to go to market. Efficiency isn’t an option anymore; it’s a necessity. Kirk: For years, everybody has wanted to do more with less, and usually, there’s some sort of limitation in the way until someone invents a solution that takes things to the next level. That’s what we’re all about at FreeWave. We’re not doing anything necessarily earth-shattering; but we are innovating. We’re providing a mechanism for our customers to become more and more operationally efficient – to increase their bottom line – and make things better, and not just for their business, but for their employees and life, in general. Case in point: oil and gas companies, considered by some to be big polluters. However, these companies have many sustainability and environmental initiatives and tenants they strive to uphold. They are a critical component of our everyday lives. They’re evolving and innovating, too. FreeWave, helps them get the most out of the equipment they have on-site so that they’re more effectively getting the oil and gas out of the ground with minimal impact. Overall, a more efficient company means less impact on the environment, and these kinds of solutions help create a better planet. Q: In your wildest imagination, where can technology take the industrial leader in the next ten years?  Parthesh: There are so many great examples. In China, there’s currently a 12-story tall facility being built to raise hogs in a conditioned environment. It’s like an office space for swine. In this environment, technology is being used in such a way that human intervention is really minimized, and because most things are entirely data-driven, they are able to be a lot more efficient. Now, there are pros and cons to what’s taking place there, and we won’t know the final outcomes for a while, but the march of technology is going to continue to go on, and I believe we will continue to see a lot more practices like this in the future. Jeff: Another example is indoor growing facilities in Saudi Arabia and Qatar. Massive facilities that are purpose-built for farming simply because there is

IIoT News Round Up: 2018-Focused Headlines

As the year winds down, industry thought leaders and publications are beginning to release their top trends and predictions for IIoT in 2018. From what we’ve seen circulating around the top news sources, there looks to be a lot in store for Smart Cities and utilities in particular. Reports have shown time and again that IoT devices are being deployed and disrupting industries at an incredible rate. While this has brought a lot of new opportunities to the forefront of many industries – we’re all aware of the lurking giant that needs to be dealt with – security.  Security has been a concern and topic of debate since the beginning of IIoT, but perhaps in 2018, we’ll see the challenge addressed in new ways. The good news is that we’re not shying away from the topic and we’ve encountered it as a common theme in recent headlines – especially in relation to Smart Cities. Here are a few top news stories that stood out to us: The Security Tipping Point An article recently featured in InfoSecurity Magazine (@InfosecurityMag)  by @philmuncaster examines the ongoing security challenges when it comes to IIoT projects for Smart Cities. The article reveals that an international poll by the Wi-SUN Alliance found security as the biggest barrier around the world: “The global, standards-based non-profit polled IT leaders in the UK, US, Denmark and Sweden who are investing in these kinds of IoT projects. It found that although half have a fully implemented strategy already in place, 90% said they struggled to implement a plan and 36% said they found it ‘extremely difficult.’ “ An eWeek (@eWEEKNews) article by @editingwhiz, featuring predictions by leaders in IoT for 2018, echoes the same sentiments, but predicts that service providers might take the issue into their own hands: “Paul Martini, CEO and Co-Founder, iboss: Better IoT network security will come to the fore: ‘The industry will continue to be plagued by IoT botnets and malware. 2018 will be the year that enterprises and service providers finally realize that waiting for device manufacturers to improve hardware security is a losing proposition and take it upon themselves to secure their networks against compromised devices. An increasing number of enterprises will deploy network security solutions that are designed specifically to protect large numbers of connected devices.’” Additionally, a Sys-Con post recently published by @S_Allen_IIoT , also emphasized the importance of security in 2018 and offered insight into solutions: “However, even with a secure communication link, if the individual devices that are connected on the OT side become compromised and an intruder gains access to that communication link, they can push malicious data, cause denial of service (DoS), or introduce malware or viruses to the entire network, IT side included.” Allen recommends the following: “Companies need to prioritize security in their quest to create endpoints for all of their field assets. Some industries, like the smart grid, are already experiencing mandates that ensure a more cyber-secure network. With others, however, it is still up to the organization to make security a top priority. There are technology providers available that are security focused and will provide those extra layers of security to the OT network.” Investment Will Grow in Utilities The Future of things (@Future0fThings)article by @morakhiya2711 looked at IIoT investments and the industries in the near future, and it looks to be an exciting time for utilities, among with manufacturing and transportation. “In addition to the funding of start-ups, overall investment in IIoT technologies and services is growing rapidly with few signs of slowing down. Through 2020, the industries that are expected to invest the most in this area are manufacturing, transportation, and utilities. Last year alone, spending reached $178 billion, $78 billion in transportation and $69 billion in utilities, as these industrial sectors leveraged the deployment of intelligent, networked devices to operate smarter and offset risks.” As investments in IIoT go up, so do the security risks. Based on the buzz in leading IIoT publications, perhaps we will begin to see new efforts to create secure end-to-end IIoT networks, as companies battle both disruption and the need to protect data and assets in 2018.

IIoT Top News: Oil and Gas Early Adopters

The Industrial Internet of Things (IIoT) is not just a means for organizations to harvest and analyze vast amounts of data to drive better business decisions. It is driving innovative ways for companies to keep their employees safe and out of harm’s way. In the latest IIoT Top News, we’ll take a look at some trending stories from the oil and gas industry, a quickly growing user of the Industrial Internet of Things to help power data-driven decisions, business operation optimization, and employee safety. The possibility of an industrial wireless oilfield is now not just a pipe dream, but a reality. Wearable Technology and the IoT Improving Safety for Oil and Gas Workers For many folks, wearable technology is viewed as a simple fad of smart watches and health tracking hardware. In the grand scheme of things, we’re just beginning to scratch the surface of wearable tech, with biotechnology, embedded smart tracking hardware, and much more right on the horizon. As noted in this article from the EconoTimes, one of the industries beginning to leverage the power of wearable technology is oil and gas. Looking back at 2014, occupational fatalities nationally were 3 per 100,000 workers. In oil and gas, that number skyrockets to 15. That’s why some organizations in this hazardous industry are turning towards the IIoT and wearable tech to keep their employees safe. From fall risk mitigation, to toxin and fume inhalation prevention and diagnosis, the applications for wearable technology for oil and gas employees in the field are many. One of the current limitations for wearable tech in the field is the ruggedness of the technology, but as new devices are designed that can withstand harsh environments, you can expect to see more adoption of this potentially life-saving tech. The IIoT and Operationalizing Excellence For the oil and gas industry, the advent of the Industrial Internet of Things (sometimes referred to as Industry 4.0) holds massive promise. From reacting to changing global trade conditions in real-time, to instantaneous equipment feedback, there are myriad uses for connected tech. This recent article from IoT Business News cautions us to heed the warnings of the dot.com era and take a strategic approach. The article argues that expecting the IIoT to be a silver bullet for business decisions will only lead to more confusion. It notes that Industry 4.0 is an incredibly powerful tool, one with the ability to fundamentally change the way oil and gas organizations do business, but it is important to go “back to the basics” and understand business needs and objectives before trying to dive into the data. In the Oil Industry, IoT is Booming Oil and gas is not always known for its agility, but when it comes to the Internet of Things,  the industry is moving at a decidedly rapid pace. This article from Offshore Engineer asserts that the IoT is not only increasingly becoming part of many organization’s strategies, but is fundamentally becoming embedded in the “oil psyche.” Dave Mackinnon, head of Technology Innovation at Total E&P UK, provides quite a bit of color around this assertion, and he believes that oil and gas is moving towards a “digital supply chain” that was fundamentally revolutionize the sector. Mackinnon also believes that when it comes to the IoT train, it’s either get on, or get left behind. “In an IoT world, many companies will discover that being just a manufacturing company or just an Internet company will no longer be sufficient; they will need to become both – or become subsumed in an ecosystem in which they play a smaller role,” Mackinnon said. Cyberattack Concerns Loom for Oil and Gas While the highest profile cyberattacks have been in the commerce and financial sectors, industrial targets remain at high risk. A recent article from Hydrocarbon Engineering notes that “because of its complex layers of supply chains, processes and industrial controls, makes [the oil and gas industry] a high value target for hackers.” As oil and gas organizations look to leverage the Internet of Things to bring increased value to their companies, it will become more and more important to build extra layers of security into their systems. Enabling the Connected Worker                       While the IIoT is indeed changing the way oil and gas companies make decisions, it is also changing the way employees perform their jobs. This article from Gas Today notes some of the ways the IoT is changing the roles of workers in the field. From AI planning and scheduling, to predictive maintenance on equipment, the connected worker faces a vastly different workplace landscape than even a few years in the past. Ultimately, oil and gas companies will look to leverage the IoT to help their employees make better decisions, as well as to stay safer and work more efficiently. Final Thoughts The Industrial Internet of Things is growing with rapid adoption across many verticals, but oil and gas is already reaping outstanding benefits from this next phase of industry. Lowering costs, optimizing oil production, and increasing worker safety are just a few of the ways oil and gas is leveraging this technological revolution.

Microgrids Gaining Mainstream Traction

While “going off the grid” is not a new term, microgrids are finding new footholds in a changing utilities industry. Recently, more and more cities and states are turning to microgrids not only as highly effective ways of increasing energy resiliency, but also as pragmatic and cost effective strategies for shifting population densities and energy consumption behaviors. Below, we’ve gather some of the top recent headlines on the changing microgrid landscape. Microgrids In New Applications Microgrids have long been viewed as an excellent tactic for supplying power to rural areas and island communities. However, recent data shows that microgrids may be expanding. This article from the Motley Fool, notes that governments and correctional facilities are turning to micrograms as viable options for emergency backup power. Another area where microgrids are seeing growth is in use for growing suburbs and rural areas. In the past, power companies has to build costly new transmission lines to service growing population areas, lines which may only be used during peak demand for a few hours a year. By leveraging microgrids, energy companies can build cost effective solutions for dealing with rare power consumption spikes. Communities Turn to Microgrids for Energy A recent article from Electric Light & Power notes that there are developing plans to build 13 microgrids across the state of New Jersey to increase the areas energy resiliency and better prepare the state for emergency situations. The effort, spearheaded by New Jersey Board of Public Utilities President Richard S. Mroz, has been prioritized in the wake of the devastation caused by Hurricane Sandy, during which many areas were left without electricity and running water for weeks on end. One of the proposed microgrids in downtown Trenton would connect several important government buildings, helping keep the cities most essential resources up and running even during emergency situations. Building a Carbon Free City In the stretch of land between the city of Denver and its airport, a new town is being built that will rely solely on a microgrid for power — and it will be completely carbon free. The city, called Peña Station Next, will rely primarily on solar energy and is receiving large financial support from the city of Denver. As reported in this article from The Scientific American, the city will rely “mainly on solar energy, a king-sized lithium-ion battery and various energy efficiency schemes” for its power. Will Battery Tech Change Microgrid Strategies? Batteries are getting bigger — so what does that mean for microgrids? As noted in this article from Teslarati.com, Neoen and Tesla recently announced the creation of a 100MW/129MWh battery adjacent to the Hornsdale wind-farm in South Australia. One of the claims Tesla had in building the battery is that the company could make money by providing off-the-grid backup power. According to the article, however, this might not be so simple. Bruce Miller, a principal consultant for Advisian, says the 80-minute discharge time for Tesla’s system isn’t in line with 10-megawatt- and 20-megawatt-hour systems that could produce $2.1 million a year from supplying backup energy. Brooklyn is On-Board with Microgrids Brooklyn, the dense suburb of New York City, is one of a growing list of major population centers to explore microgrids. As noted in this article from Green Biz, Brooklyn is exploring a strategy where a virtual web of buildings whose owners can buy and sell power to each other using blockchain technology to manage the transactions. Currently, the program has hundreds of participants signed up, and users will ultimately be able to control their participation through the use of an app.   With more governments and power companies exploring the promise of microgrids, it may only be a matter of time before a microgrid is a viable primary or emergency energy option for many. Where do you see microgrids growing next?

IIoT News Headlines: Trains, Agriculture, Underwater and More

IIoT News Trains

Industries around the world are being transformed by the Industrial IoT. We recently shared a blog with a report that estimates IIoT will experience explosive growth and approach one trillion dollars by 2025. From trains and under water applications, to agriculture, we are already seeing IIoT expand its reach today. However, we continue to see security as one of the biggest challenges – which continues to top news headlines. Below are some of the recent IIoT stories that have caught our attention: How Siemens Is Using Big Data And IoT To Build The Internet Of Trains By: @BernardMarr | Published on: @Forbes  “Siemens AG is one of the world’s largest providers of railway infrastructure, serving rail operators in over 60 countries. Through harnessing Big Data, sensors and predictive analytics they say they can now guarantee their customers close to 100% reliabilit It calls this the “Internet of Trains” – the on-rails segment of the wider ‘Internet of Things’ concept which describes how everyday objects of all shapes and sizes can now be connected together online and given the ability to communicate and capture data for analytic purposes.” Agriculture Is The No. 1 Opportunity For African Internet Of Things, Security The No. 1 Challenge  By Tom Jackson | Published on: @AFKInsider “Agriculture, Africa’s largest economic sector, is likely to be central to the growth of IoT. There are many examples around the world where value can be unlocked from enhanced efficiencies along the value chain. Mining, oil and gas, telecommunications and manufacturing will have to adopt IoT to improve efficiencies.”   The Internet of Underwater Things Published on: @NauticExpo_eMag “The development of an Internet of Underwater Things (IoUT), transmitting data throughout the ocean could make possible a system of roaming, autonomous vehicles and underwater sensors, all communicating with each other and relaying information to networks above the surface. This could be used for a wide range of submarine tasks, from pipeline repair and shipwreck surveys to seismic detection and ecological monitoring.”  IIoT and The Cyberthreat: The Perfect Storm of Risk By: @ChrisGrove_Geek | Published on: @MBTwebsite “Many of these newfound risks did not previously exist, mostly due to the lack of interconnectivity and the network ‘air-gap’ — which has become a thing of the past. As industrial organizations race to keep up with advances in manufacturing technologies, IT is increasingly encroaching into the OT world. It’s no longer uncommon to find IT technologies like Ethernet, Wi-Fi, the Cloud and cybersecurity products like virus scanners, firewalls, Intrusion Detection/Prevention Systems and Security Information/Event Management (SIEM) products being managed outside the purview of IT.”   It will be interesting to see how the IIoT continues to transform industries. What are some of the interesting use cases you are seeing as the IIoT growes? What are your biggest security concerns when it comes to IIoT?  

Can Oil and Gas Keep Up with Digital Disruption?

The oil and gas industry has faced transformational potential in the last several years. As a critical piece of infrastructure for nearly every industry – and the economy – it’s ability to keep pace with the lightning rate of technological upheaval has been challenged. The convergence of IoT, the Cloud and Big Data has created a whirlwind of possibilities, but the major challenge will be whether the industry can successfully unify its data collection and transport at the necessary scale. There are several factors that will determine the ultimate success of this data: hardware capable of handling the consistently rugged environment, reliable connectivity, a general consensus on the best programming language for widespread use, and the applications capable of transforming Big Data into Smart Data. Rugged Hardware Most well pads are set in remote environments where the conditions are rugged or downright extreme. Not only are RF communications greatly affected by these conditions, but as the connectivity shifts toward (potentially) remote WiFi, then the devices must not only be more sophisticated, but that sophistication must be ruggedized as well. We recently published a case study that shows how our radios held up in a cool use-case in Antarctica for data collection in an extremely harsh environment. Granted, most oil companies are not looking Antarctica as a possible drilling location, but the visual does a good job of showing just how rugged the hardware needs to be. It cannot fail when delivering data to companies, as that data is more important than ever. Reliable Connectivity There are several different methods for connectivity at remote locations, but two that are gaining ground on traditional systems are Frequency Hopping Spread Spectrum (FHSS) and WiFi. Of the two, WiFi faces the greatest obstacles because it relies on several different transfer or booster points, but its strengths as a transport method are starting to outweigh some of those challenges. FHSS has been around for quite a while, but the technology, surprisingly, is still somewhat misunderstood. The ripple effect from its applications are felt throughout many industries, but the key differentiators are its consistency and reliability. Programming Languages Today, there is hardware on the market that is capable of putting proprietary, third-party applications at the edge. But, in order for these apps to be effective, the industry needs to find the programming language that best serves the need. It’s similar to when personal computers were first hitting the market. Each PC company wanted its computer to run its own kind of software, but the industry ultimately realized that best chance for success was to create a standard. Since then, even though open source is still a critical piece of software development, most PCs and other platforms can basically run the same kind of software. This same approach to standardization needs to be taken with programming languages or the battle for supremacy will continue to fracture an industry at a time when it needs cohesion for maximum growth. Edge Applications Speaking of finding a unified programming language, the result of that will be an explosion of applications that can be deployed on the aforementioned hardware. Once companies have the ability to create these applications to fit specific needs, then they will be able to take Big Data and turn it into Smart Data. A hallmark of the Industrial IoT, and what separates it from basic machine-to-machine communication, is the intelligence. Smarter applications means smarter data means more efficiency. Many of these platforms are still in their infancies, but we’ve seen evidence of a strong groundswell bringing these to the forefront. Ultimately, if these four components can come together in the right way, the oil and gas industry will be able to reap the benefits. And, frankly, they will be reaping these benefits long before other industrially oriented markets. Aligning these needs is not easy, but the potential exists as long as oil and gas companies embrace the disruption and unify the data.

Friday Top 5 IIoT News Roundup

It’s time to nominate our Friday top five Industrial IoT news articles of the week. Much like the weather in Boulder this week, we couldn’t decide on just one vertical focus, so we cast a wide net of IoT topics. In this week’s roundup, you’ll find a splash of fog computing, manufacturing, smart grid, security and overall IoT updates. Dive in and see if you agree with our picks. Don’t miss the Friday bonus at the end of this short roundup. Making fog computing sensors clearly reliableBy @Patrick_Mannion | Published on @ednmagazinehttp://www.edn.com/design/sensors/4442602/Making-fog-computing-sensors-clearly-reliable“As fog computing rolls in, the onus is upon designers to figure out how much intelligence should be at each node of the system for optimal performance. This implies then that sensors will need to start being more intelligent, with some level of built-in processing, storage, and communications capability.”  Army needs wide-area electro-optical sensors for manned and unmanned aircraftBy @jkeller1959 | Published on @IntelligentAerohttp://www.intelligent-aerospace.com/articles/2016/08/ia-wami-sensors.html“Army researchers are interested in moderate-resolution persistent-surveillance electro-optical sensors that operate during the day and at night over large areas to detect vehicles and people on foot. Researchers want to develop a sensor that consists of an imaging sensor, as well as a storage and processing unit.”  Five essential IIoT DefinitionsBy @MMS_MattDanford | Published on @MMSOnlinehttp://www.mmsonline.com/blog/post/5-essential-iiot-definitions-“The idea is not just to exchange and collect data, but to act on that data to make things better. (One commonly cited example is a “smart” thermostat.) IIoT is the same concept applied to industry. Examples range from “smart” buildings and power grids to “smart” transportation networks. IIoT might initially take the form of a machine tool status monitoring system.”  What makes a grid smart?By David Shadle | Published on @tdworldmaghttp://tdworld.com/grid-opt-smart-grid/what-makes-grid-smart“My point, however, is that the critical consideration is not the number of sensors, controls or data storage components we add to our system when we decide to move ahead with smart grid applications. The focus also needs to be on mastering the integration of these systems, many times across traditional IT and OT lines, to allow them to achieve their potential for intelligence.”  Top ten security predictions through 2020By @Gartner_inc | Published on @Forbeshttp://www.forbes.com/sites/gartnergroup/2016/08/18/top-10-security-predictions-through-2020/#4d8ba8073cbe“Through 2018, more than 50% of Internet of Things (IoT) device manufacturers will not be able to address threats from weak authentication practices.”  Friday Bonus! FreeWave Technologies announces partnership with Solis Energy By @SolisEnergy and @freewavetech | Published on @SolarNovus http://www.solarnovus.com/freewave-technologies-announces-partnership-with-solis-energy_N10256.html “Both companies are excited about the partnership and are already working through high profile opportunities to take advantage of the growing demand for smart systems and industrial connectivity.”

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.

Did you find what you were looking for?

Please let us know if you didn’t find what you were looking for so we can help make the site better for you.