Data that Drives Electric Vehicles

There was a lot of hype surrounding electric vehicles when they first hit the market for consumers. Supporters saw electric vehicles as a key solution for battling gas prices and making a positive impact on the environment. Over the years, several countries throughout the world have incentivized the purchase of electric vehicles through subsidies available to both the car makers and the buyers. However, as we roll into 2017, sales are short of expectations in the U.S. Currently, we’re seeing only about 400,000 electric vehicles on the road. In President Obama’s First term, he said that he believed the U.S. could have one million electric vehicles on the road by 2015. When January 2016 hit, the estimate was looking like it could take up to another four years to accomplish the goal – especially with continuing low gas prices and troubled electric vehicle battery technology. To help further the push towards electric vehicles, the White House recently hosted an electric vehicle datathon to find and discuss what data would drive the deployment of more electric vehicles on U.S. roads. The event was co-hosted by the U.S. Department of Energy and four National Laboratories. The White House announced that electric vehicle experts, automakers, charging-station providers, cities and states collaborated with software-development and data-analysis communities as the group looked for answers to the electric vehicle challenges. Together, they worked to better understand how plug-in (electric) vehicles contribute to and help the environment and economy. They also worked to find out find out what it will take to make U.S. consumers more interested in purchasing electric vehicles. Electric Vehicles and the Right Data Electric vehicle manufacturers, well aware of the challenges and slow adoption, have also worked to provide U.S. citizens with appealing electric vehicle options. During the R&D process, these manufacturers are challenged with improving vehicles to increase purchases and usage in the U.S. Battery challenges aside, careful selection of communication technology is essential to improving data and performance of these vehicles. Without proper data collection and transport, vehicle performance cannot be analyzed and improved. One of the leading electric car companies uses Sensor-to-Server (S2S) solutions for RTK base station communications to improve data and correlation. As the Internet of Things (IoT) infiltrates more areas of our everyday life, S2S solutions designed to be robust and reliable in heavily industrial environments work as a communication solution for many industries across the board. From typical industrial environments like oil/gas and water/wastewater, to smart cities and the automotive industry and more specifically, electric vehicles. S2S solutions offer high-speed, long range connectivity with 900 MHz RF technology and they can support third party applications. As the electric vehicle industry looks to data for overcoming challenges, these solutions are designed to collect, protect, transport and control critical data from network end points all the way back to the server. Electric car manufacturers have a ways to go in terms of driving more adoption from consumers, but they have a nice selection of IoT and sensor-based technologies to help improve data and communications.

IoT Evolution Podcast Recap: Edge Computing Future

Edge computing has become a topic of hot conversation as the technology capable of supporting sensor-2-server data transport has matured. The realization of true edge computing is accompanied by a host of benefits, including real-time data transmission, maintenance needs and considerable savings for operational expenses. Is edge computing the cut-and-dry future? Ken Briodagh, editorial director with IoT Evolution, plays devil’s advocate on a recent podcast with FreeWave Technologies CMO Scott Allen. He asks, essentially, “If companies focus resources on the real-time data transport at the edge – sending small packages of data at a time in the interest of speed – are we losing the benefits of big data? Do we lose the information that big data sets can provide in terms of predictive analytics and, ultimately, machine learning if we discard bits and pieces of data at the edge that we’ve deemed irrelevant?” Listen to the podcast below for Allen’s response! Overall, edge computing has three main drivers: latency–our need to have the data in milliseconds; loss of communication–able to solve the factory problem without shutting down the entire plant; proximity–sensors in the field monitor the data back to the edge. Edge Computing Solution Depending on the industry, a mixed bag of both programmable and edge computing solutions is an answer to Briodagh’s question. In some cases, especially with the oil and gas industry, companies rely on a sensor-2-server stream of communication, where they need to have the information in real-time, and if there is a problem, be able to act locally and fix the issue before anything drastic happens. The network is a combination of radios communicating with sensors that pass the data to a gateway and up to a cloud system. The network uses only small data sets to transmit a continuous flow of intelligent, sensor-based information, optimizing bandwidth in situations where latency is crucial. Next for the Edge There will come a time when using edge technology will just become a regular line item expense needed to do business in this modern age. Some early adopters have already started using gateway systems as a cookie cutter roll-out for all future expansions. Many worry the cost of entry is still too high to integrate, even though the need for transmission is great. As our digital age grows, infrastructure complexity and the desire to implement the latest technology grow along with it. Altogether, edge computing is still in its infancy stage, so no one really knows what data  we deem irrelevant today will be vital tomorrow.

Top Industrial IoT News Roundup

There is a lot happening in the industrial IoT (IIoT) space lately, as evidenced by all the recent news announcements, analyst insights and business transactions occurring on the daily. Some say there is a foggy forecast for the industrial internet of things, mainly because the success of cloud computing must extend beyond data centers, but real world use cases should continue to pave the way. In some respects, perhaps it’s just the fact that the ROI from the IIoT is still in its infancy, but many are clamoring that a more standardized infrastructure is needed to help solve the unique complexities that IIoT presents. In this week’s IIoT news roundup, you’ll find a little bit of everything – from oil and gas and manufacturing to fog computing, drones and sensors. Dive in and see if you have any other articles that you think are worth adding! And don’t miss the bonus update at the end of the news roundup. Deloitte: End-to-End Automation Real Value of IIoT Technology By @KarenBoman | Published on @Rigzone “Industrial Internet of Things (IIoT) technologies such as machine learning and drones are now available, but the real value lies in linking these technologies together to allow for end-to-end automation, a Deloitte executive told attendees at the Internet of Things Oil and Gas Conference 2016 Wednesday in Houston.”   Is Now the Time to Apply Fog Computing to the Internet of Things? By Dr. Vladimir Krylov @Artezio | Published on @IoTEvolution “With fog computing, latency is minimized if one uses fog nodes for data analysis without sending it to the cloud. All event aggregation in this case has to be performed in the distributed architecture deployed in the network where devices (sensors) and fog nodes are located. Thus, fog architecture moves the capacity question from the cloud to the network implementation.”   Manufacturing firms investing in IIoT data analytics – even if other areas are slowing down By @James_T_Bourne | Published on @IoTTechNews “The research, the findings of which appear in the report ‘Data’s Big Impact on Manufacturing’, found that of the more than 200 North American manufacturing executives polled, 70% said investing in data analytics would lead to fewer equipment breakdowns, while less unscheduled downtime (68%), unscheduled maintenance (64%), and fewer supply chain management issues (60%) were also cited.”   Go Ahead, Fly a Tiny Drone. The Man Doesn’t Have to Know By @luxagraf | Published on @WIRED “THE WILD WEST days of drone flight came to end earlier this year when the FAA began requiring that pilots register their aircraft with the agency. If you want to use your Unmanned Aircraft System (as the FAA calls them) for anything remotely commercial, you’ll need to go a step further and pass a test.”   Could Optical Fibre Sensors Save Lives? By @loctier | Published on @euronews “This edition of Futuris looks at how optical fibre sensors could help monitor the stability of roads, buildings, bridges and other constructions – and save lives.”   Discovering Value in the Age of IIoT By @lasher64 | Published on @automationworld “The solutions of tomorrow will be much more integrated between implementation tiers on the plant floor to the enterprise and beyond. Therefore, it is imperative that these solutions give strong consideration to network architectures and cybersecurity. As we continue to move forward, you will hear more about operational technology (OT).”   IoT is not about radios; it’s all about data By Alan Carlton | Published on @NetworkWorld “The initial challenge for the Internet of Things (IoT) was how to provide physical connectivity of small and often remote devices to the Internet. This issue has basically been solved with the plethora of wireless connectivity solutions. The real challenge for IoT is data organization, sharing and search on an unprecedented scale.”   BONUS NEWS   This week, FreeWave announced a contest at a chance to win FreeWave’s award-winning WavePro WP201 shorthaul and Wi-Fi solution. Contest entrants must provide a high-level account of the application of the WavePro, along with a description of the need for the platform. Winners will be announced at the close of the entry period. To enter the contest, please visit: http://go.freewave.com/wavepro-network-giveaway.  Submissions are due by September 30!

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.

Did you find what you were looking for?

Please let us know if you didn’t find what you were looking for so we can help make the site better for you.