Guest Post: Keep the Data Flowing in Oil and Gas

By Joyce Deuley, Sr. Analyst and Director of Content at James Brehm & Associates LLC State of the Industry This year has proved challenging for oil and gas companies: falling prices, crackdowns from environmental regulations, growing concern about the destabilization of land due to fracking, as well as an increasing gap between jobs and skilled engineers to name a few issues. Royal Dutch Shell, for instance, recently terminated its plans to drill off the Arctic coast of Alaska for the “foreseeable future”—this is after $7 billion dollars and more than five years spent on exploratory drilling (with disappointing results) and the purchase of costly leases and permits for the privilege to do so (Daily Mail). The Arctic Circle has been viewed by many as a “holy grail” in terms of rich oil and gas reserves—the largely untapped Great White North, if you will. Initiatives in the Baltic have also come under discussion lately, as Russia negotiates the political quagmire it has found itself in concerning territorial disputes. Still, it isn’t all doom and gloom. Our reliance on oil and gas for manufacturing, shipping, transportation, energy, and more hasn’t dissipated—rather, it will continue to increase with the rising population and result in rapidly expanding urbanization. More food will need to be shipped globally, more cars will be driven, more homes will be heated, more materials will need to be made, etc., providing rich opportunities for oil and gas companies to invest in scalable solutions, as well as to firmly root themselves as valued players in the market. Investors, and other interested parties, are paying close attention to the oil and gas markets to better determine how best to mitigate depleted reserves and improve overall productivity and efficiency: keeping their bottom lines low and profit margins high. To pull back from an environmental and global perspective on the state of the industry, let’s instead bring it into a sharp focus with its current business challenges. Problems with efficiency include legacy pipeline and refinery infrastructure that hasn’t been updated or modernized in decades, a shortage of skilled labor as qualified engineers approach retirement, the need for increased monitoring and control across remote areas, and the mission-critical need for the aggregation, interpretation and management of unprecedented amounts of data. But, effectively managing that data can present major challenges for oil and gas providers: with so many devices at the edge, they are practically drowning in the seemingly endless flood of information that is collected. The need to find reliable data management platforms that help remove complexities associated with data visualization is critical for these companies’ ability to identify and enact valuable business decisions. What to Do About It It is no secret that the Internet of Things (IoT) has proven to be disruptive across a myriad of markets. While the technologies and principles of the IoT have been around for decades, predominantly within the manufacturing and processing industries, its relatively nascent presence within the consumer electronics and wearables markets has helped rebrand the IoT with a level of “sexiness” it previously lacked. But at the heart of the IoT is a near-obsessive desire to decrease operational and deployment costs, meet compliance regulations and to dramatically increase productivity and efficiencies. The oil and gas industry happens to be one of the largest growing areas for IoT deployments and has found many ways to benefit from connected solutions, such as pipeline and wellhead monitoring. Oil and gas pipelines can span across hundreds of miles of rugged terrain. The ability to monitor such a territory can be challenging, as harsh winters and debilitating droughts, forest fires and or heavy rains can put stress on the integrity of a pipeline, plus the remote nature of its location can prevent technicians from being able to regularly service it. Another challenge is knowing when and specifically where a problem occurs. For instance, if there is a malfunction that results in a leak along one of the more remote sections of a pipeline and there is no sensor to alert someone, we could be looking at a nightmare of a situation: environmental damages, not to mention untold amounts of costly clean up, repairs and definitive losses to the oil and gas company at large. By utilizing connected sensors along the lengths of their pipelines, oil and gas companies can overcome these challenges and monitor flow, pressure, integrity of the pipeline and more. Empowered by the IoT, oil and gas providers can receive near real-time information about their entire operation, enabling decision makers to better manage their technicians, as well as improve overall production and reduce maintenance and operational costs. As oil and gas companies wait for the stock market to pivot from $50 a barrel, they need to look seriously at implementing business solutions that are going to help them weather this lull. The IoT provides many opportunities for oil and gas providers to tighten their belts by increasing efficiencies and production, ultimately reflecting in a more cushioned bottom line. Pipeline monitoring and control applications can help reduce non-productive times by up to 30%, which is just one small example of how dynamic transformations could be made by the IoT. About Joyce Deuley As Sr. Analyst and Director of Content, Joyce researches and interprets market trends, locates opportunities for growth, and researches the current happenings in the M2M and IoT space, providing our clients with up-to-date and actionable information. Joyce specializes in technical communication, translating complex data into layperson-accessible presentations, articles, and white papers. Additionally, Joyce manages, contributes, edits, and designs our newsletter, The Connected Conversation. She currently offices out of, and is a founding member of Geekdom, a tech accelerator-like co-working space in San Antonio, TX. Previously, Joyce worked as a Secondary Researcher at Compass Intelligence, learning the M2M markets alongside James Brehm. While at Compass Intelligence, she gained experience in market research, competitive analysis, content strategy, as well as qualitative research. Joyce graduated with a B.A. in English, focusing on Professional and Technical Communication, from the University of the Incarnate Word (UIW) in San Antonio. She

Ships that Sail Themselves

Is it time for ships to sail off on a journey by themselves? As the Internet of Things (IoT) connects the world, while the robotics industry continues to innovate, man and machine are merging together like never before. Unmanned aerial vehicles (UAVs) have impacted a number of industries from agriculture to security. If recent news is correct, it won’t be long before autonomous cars are traveling roads alongside us. Now, organizations and government agencies around the world are actively working to bring autonomous vessels to our oceans. What can we expect from unmanned ships operating in our largest bodies of water? IoT and robotics are being considered for a variety of commercial and military purposes at sea. For most of the world, it seems autonomous ships are in the testing phase, but there are big plans in the works around the globe: The British engine maker Rolls Royce Holdings, PLC is leading the Advanced Autonomous Waterborne Applications initiative with several other organizations and universities. The company is eyeing a timeline of remotely controlled ships setting sail by 2030 with completely autonomous ships in service by 2035. The timeline will be heavily dependent upon automation technologies’ ability to carry large amount of data from ship to shore to ensure safe operations. Recently, the UK’s Automated Ships Ltd and Norway’s Kongsberg Maritime, unveiled plans for a light-duty ship for surveying, delivering cargo to offshore installations and launching and recovering smaller remote-controlled and autonomous vehicles. “This ship is considered the world’s first unmanned ship for offshore operations and is being eyed for many uses including offshore energy, fish farming and scientific industries.” In the U.S., the Navy has begun to consider autonomous ships for a number of applications, but is cautiously approaching these new technology advancements. According to National Defense Magazine, “The Navy for now appears to be in no hurry to pour big money into drone ships and submarines. And there is little tolerance these days for risky gambles on technologies.” However, the article acknowledges that robots at sea could help do the jobs that are dangerous or costly for human operators, such as hunting enemy submarines, detonating sea mines, medical evacuations and ship repairs. The European Union (EU) appears to have a vested interest in sea robotics. As infrastructure costs rise for improving rails and roads, they have begun to seek alternative ways to move large quantities of cargo. According to Maritime Executive they have, “had a long-term goal of making short sea shipping more competitive with road and rail transport, which is under stress from the transportation bottlenecks caused by increasing volumes of internal trade.” As the EU faces massive infrastructure costs to upgrade road and rail, there is increased attention and effort directed at the “motorways of the sea.” The Defense Advanced Research Projects Agency (DARPA) has been testing a robotic ship called the “Continuous Trail Unmanned Vessel,” and has been running sea trials on its radar system. The radar is fastened to a parasail that enables heights of 500-1,500 feet. These are just a few of the autonomous vessel projects in the works. In order for unmanned vessels to operate, it is clear the ability to transport data in massive amounts will play a critical role in the success and safety of those sharing the sea with autonomous ships. As technologies evolve to meet these big data needs, we can eventually expect to see more unmanned vessels in the sea, improving offshore applications, making human jobs safer, and creating new efficiencies for organizations looking to optimize international trade.

IIoT Top News: What the Industry Experts Say

Living in a 24-7 news cycle, it is best to take a break from all your favorite news outlets and go back to the basics. Industry analysts today are charged with giving their audience an unbiased report of their findings, that’s why this week’s top IIoT news is dedicated to seeking out some of the industry expert opinions in this ever-changing digital world. Let’s start by looking at Ovum’s 2015 key theme for the oil & gas industry. According to Ovum, more modernization of IT platforms will continue to help reduce the disconnect from the IT stone-age equipment to the modern real-time IIoT, thus allowing companies to improve their overall decision making process. A closer look at Forrester, we find security topping the list for 2016. In a recent report, Forrester is quick to call out the shortsighted firms for not realizing the importance of implementing proper security measures to protect the collection of data. It is recommended that firms stop focusing on the lowest possible cost to secure data, and turn the focus into the best way to keep and maintain quality information safely. On another digital front, Gartner predicts that by 2016 6.4 billion IoT devices will be in use, and only sees that number soaring with an estimated 20.8 billion things connected by 2020. Overall, we heard about the need to bring ethics to data, and predictions of how data will be turned into insight and action in the coming year. Other reports included the top digital trends and how those trends fit into the new digital mesh landscape. Additionally, we learned about revolutionary IIoT operational ideas for the future and a big data forecast for 2016 and beyond. Hope you enjoy this week’s research related reading! Bringing ethics to data, a board-level agenda item (OVUM) The challenge facing companies today is, what practices should be put in place to handle the large scale, data being collected. Tom Pringle reiterates the assertive stance Ovum has taken when it comes to the ethics of big data, “If data holds the potential to benefit many, it also has the potential to harm many (as an unexpected outcome, or purposefully negative).”   Forrester’s 2016 Predictions: Turn Data into Insight and Action In the 2016 Forrester predictions, Brian Hopkins, Enterprise Architecture Professional has broken the it up with three major shifts, that will help turn data into insight and action. Hopkins is quoted as saying, “Machine learning will replace manual data wrangling and data governance dirty work.”   Top Ten Digital Trends Signal the Digital Mesh (Gartner) David Clearley, vice president and Gartner fellow details the top digital trends and how those trends fit into the new digital mesh landscape. The fifth trend on Gartner’s list is advanced machine learning, Clearley believes that, “Advanced machine learning is what makes smart machines appear “intelligent” by enabling them to both understand concepts in the environment, and also to learn.” This area is quickly evolving, now is the time to figure out what technologies your company needs so you can have the competitive advantage.   Convergence in the Plant Asset Management (PAM) Market (Frost & Sullivan) In this detailed plan from Frost & Sullivan, they see IoT driving the next generation of improvements with predictive analytics. Furthermore, in the plant asset management (PAM) market Frost & Sullivan sees the, “Industry initiatives, including Industry 4.0, Smart Manufacturing, and applications of Internet of Industrial Things (IoT) technologies are revolutionizing operations and maintenance, enabling the cost-effective connectivity of a wide variety of asset classes.”   New IDC Forecast Sees Worldwide Big Data Technology and Services Market Growing to $48.6 Billion in 2019 A new report from IDC forecasts the enormous expansion of both big data worldwide and the services market by 2019. IDC predicts that, “The Big Data market continues to exhibit strong momentum as businesses accelerate their transformation into data-driven companies.”  

Big Data: Election Analytics and More

During the 2016 election season, we’ve seen considerable media coverage on big data and predictive analytics.  The access to massive quantities of data has played an increasingly important role not only for predicting the election winner, but also for driving candidates’ campaigns. During the 2012 election we saw political data science and big data leveraged by campaign managers to tap into the public opinions of the candidates. The information garnered from those data points led to decisions that shaped campaign strategies. Since 2012, we’ve seen substantial advancements in political data analytics. A recent Forbes article explains this well, “In recent years, political data analytics has advanced from simple micro targeting to true predictive data science, and the track record is good. Some of the brightest minds in the field are using massive amounts of data, complex models and advanced algorithms to determine the best way to appeal to big swathes of the electorate without alienating possible converts.” A GOP strategist recently claimed that analysts have about 400 data points stored for the average American voter and noted that they are constantly querying the database for insight. Predictive Analytics is an increasingly useful and complex practice — and it is not limited to presidential elections. It can be used in almost every industry to drive intelligent and informed business decisions. First, let’s define predictive analytics in relation to this post. This definition from TechTarget highlights the role of statistical analysis and machine learning to arrive at an actionable model: “Predictive analytics is a form of advanced analytics that uses both new and historical data to forecast future activity, behavior and trends. It involves applying statistical analysis techniques, analytical queries and automated machine learning algorithms to data sets to create predictive models that place a numerical value, or score, on the likelihood of particular events happening.” Beyond the Election With the rise of the Internet of Things (IoT) we are currently seeing predictive analytics leveraged for applications across industries to help organizations make better operating decisions. Here are a few application examples recently highlighted in Forbes: Models designed to predict where crimes will be committed Predicting the price of oil Insight into how upcoming events might influence a business Predicting the probability of success for a startup Identifying trends in the academic literature Predictive Analytics and S2S Communications Today, there are technology solutions designed for intelligence-enabled decision making. Sensor-2-Server (S2S) communication solutions in particular, help meet the increasing demand for data. S2S by definition is an intelligent communication that begins at the sensor level and targets servers for specific reasons. With an intelligent communication system to enable predictive analytics, operators can leverage new technology to improve the profitability of their businesses. As an example, let’s look at the one of the predictive analytics use cases listed above– a model for predicting the price of oil.  If an oil and gas company has an intelligent system in place, it can respond in real-time to its oil production levels. The data can help operators determine if production should be increased or decreased in certain areas to maximize profitability. Predictive Analytics Recap Predictive analytics engines allow organizations to analyze more data, faster. Key decision makers gain insight into trends and patterns that may be otherwise overlooked. They can make intelligent predictions that shape business operations and strategy. With the right techniques in place, an organization will make better decisions, cut costs and increase profitability. And for those who are running for public office? They now have more insight into the opinions and trends for voters than ever before. This has changed the game in a lot of ways because campaigns can be tailored to an audience based on specific data.

IoT Emerge Recap

IoT Emerge bounced on the scenes of Chicago this week. Yes, aside from the long awaited World Series win, an IoT conference was happening in this windy, action-packed town. The conference boasted two days of keynotes, technical sessions, workshops, live demonstrations, hands-on training and plenty of opportunities for networking with industry peers. The IoT Emerge mission is to continue to educate and promote cross-industry functions with a focus in Industrial IoT, smart cities and IoT engineering. Below, we’ve highlighted the best moments from the week. IoT Emerge: What have we learned? Back in 2011, research firm Gartner said the Worlds of IT and Operational Technology Are Converging. We believe IT/OT convergence is a critical concept: it promotes a single view of an enterprise’s information and employs process management tools to help ensure that every person, machine, sensor, switch, device, etc. in an organization has accurate information in the best format and at the right time. We learned optimizing the business process is vitally important. Decisions will be made in real time with higher levels of confidence because more information will be available regarding the event or condition. For example, load shed or curtailment events will be based on energy availability (IT sources) and demand throughout the distribution network (OT sources). Event management in an IT/OT converged networkwill execute as a closed loop process by targeting a feeder or substation, issuing curtailment signals to customers under that substation or feeder. This gauges real-time response and repeats as required to achieve the target reduction time. What other insights did we gain from IoT Emerge? Myths about IoT Engineering: The Industrial Internet of Things (IIoT) is not ready to support predictive analytics With commentary from Eddie Garcia @freewavetech | Published on @ElectronicDesgn “When most people think about the IIoT, they think of machine-to-machine communications (mostly supported by RF technology) that have dominated the industrial sector for years. However, the convergence of IT and OT practices have seen intelligence moved closer to the access layer than ever before. New communication platforms have improved to the point where big data transport can come directly from the sensors at the edge (OT) all the way to the servers in the back office (IT). The industrial sector is closer than it’s ever been to supporting the future of data collection, transport, and aggregation, ultimately resulting in the huge data sets necessary to support predictive analytics at the IT/OT level.” IoT Emerge and Up-Close and Personal IoT Experience By @JKerns10 | Published on @MachineDesign “As IoT applications and case studies start piling up, some companies still wonder where the Industrial Internet of Things (IIoT) fits in their production lines. There’s lots of information on the internet about the IIoT, such as how IIoT worked in one application or how much a company could save by using a specific IIoT product. While examples and case studies offer ideas on how IIoT might fit your production line, having a chance to talk to experts directly about your applications and concerns can help ease concerns.” IoT Emerge: Looking ahead to the future By @IoTEmerge | Published on @cote_se IoT Emerge a chance to shed light on the possible digital future. Smart cities and Industrial IoT top the watch list. Along with the conference buzz, conference organizer Penton Publishing also launched the IoT Institute aimed at educating the growing IoT world. Color your IoT World By @IoTEmerge Coloring is not just for the kiddos. IoT Emerge worked with local Chicago artist Rawfa to create a wall sized coloring book. Conference goers got to take a break from the IoT information overload and color to their harts content. Industry thought leaders did an excellent job representing the broad range of emerging IoT applications this year, and as we move steadily toward the close of 2016, it’s clear that we can expect some exciting and innovative technology applications in the not-too-distant future.

Industrial IoT Weekly Highlights

It’s time for another edition of Industrial IoT (IIoT) weekly highlights! Robots seem to be taking over this round of updates – by air, land and sea. Don’t fret, we haven’t stepped into a Sci-Fi movie just yet. Aside from machines, we gathered the latest information about fog computing, and why this trending concept is needed in the enterprise. The possibilities for machine innovation spurs thinking that we are just scratching the surface of digital transformation. What will people think of next? Sit back, relax and get ready to enjoy another round of weekly IIoT highlights! Weekly Highlights Breakdown What Is Fog Computing? And Why It Matters In Our Big Data And IoT World By @BernardMarr | Published on @Forbes “Fog computing, also sometimes called edge computing, solves the problem by keeping data closer “to the ground,” so to speak, in local computers and devices, rather than routing everything through a central data center in the cloud.” Farm 2026: The Robots Are Coming By @hiyamckidd | Published on @FGInsight “Lettuce thinning is still done manually at lower cost, but robots are likely to reach break even with human labour within 12 years.”   Digital Technology to Transform Oil, Gas Hiring Practices By @KarenBoman | Published on @Rigzone “When oil and gas companies start hiring again, they will need to prepare for a workforce of college graduates who want to work off a cell phone or tablet.”   Manufacturers Struggle to Woo Software Developers By @AndrewTangel | Published on @WSJ “Nearly every industry is looking to hire software engineers and developers. But the manufacturing sector is having particular trouble attracting potential recruits.”   The 10 Coolest Drones at the Worlds Biggest Robot War Games By @David_Hambling | Published on @PopMech “Unmanned Warrior is the world’s biggest robot war game, currently taking place for two weeks off the coast of Scotland. It was proposed by First Sea Lord Admiral George Zambellas to give airborne, surface, and underwater drones from various suppliers a chance to show off their prowess. Unmanned Warrior is part of Joint Warrior, an exercise involving 30 warships and submarines from 18 nations. But for the newly inaugurated robot portion, the U.S. is a strong presence, with teams from the Office of Naval Research (ONR).”   As we conclude our Industrial IoT weekly highlights, we hope you were entertained and enlightened. Technology continues to change at a fast pace, let’s find common ground with our robotic pals. Tune in next time for more IoT innovation!

IoT Evolution Podcast Recap: Edge Computing Future

Edge computing has become a topic of hot conversation as the technology capable of supporting sensor-2-server data transport has matured. The realization of true edge computing is accompanied by a host of benefits, including real-time data transmission, maintenance needs and considerable savings for operational expenses. Is edge computing the cut-and-dry future? Ken Briodagh, editorial director with IoT Evolution, plays devil’s advocate on a recent podcast with FreeWave Technologies CMO Scott Allen. He asks, essentially, “If companies focus resources on the real-time data transport at the edge – sending small packages of data at a time in the interest of speed – are we losing the benefits of big data? Do we lose the information that big data sets can provide in terms of predictive analytics and, ultimately, machine learning if we discard bits and pieces of data at the edge that we’ve deemed irrelevant?” Listen to the podcast below for Allen’s response! Overall, edge computing has three main drivers: latency–our need to have the data in milliseconds; loss of communication–able to solve the factory problem without shutting down the entire plant; proximity–sensors in the field monitor the data back to the edge. Edge Computing Solution Depending on the industry, a mixed bag of both programmable and edge computing solutions is an answer to Briodagh’s question. In some cases, especially with the oil and gas industry, companies rely on a sensor-2-server stream of communication, where they need to have the information in real-time, and if there is a problem, be able to act locally and fix the issue before anything drastic happens. The network is a combination of radios communicating with sensors that pass the data to a gateway and up to a cloud system. The network uses only small data sets to transmit a continuous flow of intelligent, sensor-based information, optimizing bandwidth in situations where latency is crucial. Next for the Edge There will come a time when using edge technology will just become a regular line item expense needed to do business in this modern age. Some early adopters have already started using gateway systems as a cookie cutter roll-out for all future expansions. Many worry the cost of entry is still too high to integrate, even though the need for transmission is great. As our digital age grows, infrastructure complexity and the desire to implement the latest technology grow along with it. Altogether, edge computing is still in its infancy stage, so no one really knows what data  we deem irrelevant today will be vital tomorrow.

The Glue that Holds Our “Connected” Dreams Together

Image courtesy of Flickr Creative Commons The visage of our “smart” or “connected” destiny is often presented to us in broad strokes: self-driving vehicles, connected homes, logistics, wearables – the list continues on with each piece of evolving and maturing technology. Smart cities have a bright future, and the application possibilities seem expansive, but often lost in the conversation is the technology that actually enables the connected world. Within a smart city – or even at a micro level – within one specific industry deploying smart technology, are a wide range of considerations: how much data are we transporting? How will we transport that data? How can we make our system intelligent? Where do we need to install these intelligence-driving platforms? How can we connect our data, operational technology and information technology to the necessary access points? Who/what has access to this data and control over these machines? These are only a few of the considerations that companies must address that are responsible for the industrial services driving cities and municipalities. While security is indeed a critical piece of this landscape, before any kind of connected or smart city can be achieved, the literal communication platform upon which that connectivity is deployed must first be implemented in a way that is not only compatible with current technology, but that will also be compatible with future technologies as well. From our perspective, there are five critical elements behind a smart city connected infrastructure: Robust Cloud Services Infrastructure designed to support all consumers of smart city deliverables Core Network Architecture that can rapidly expand in bandwidth and reach Extended Access Layer network architecture that incorporates a wide range of wired and wireless technologies to reach every sensor and device or that needs to connect to the smart city infrastructure A wide range of reporting devices such as sensors, visibility devices and other end points that create the data that makes a smart city work Distributed intelligence technology that allows for local execution of applications at the access layer plus global communication of data/analytics and information While each one of these tools is important in its own right, there is a common, underlying thread that connects them: each facet depends on a robust, reliable and secure communication platform. For smart cities, these communication platforms must be capable of enabling multiple methods of connectivity, but most importantly, they must be able to provide industrial-strength Wi-Fi. Wireless connectivity is the backbone of communication between the sensors that power all facets of the connected industrial infrastructure and the big data transport that is critical to the analytics that power “smart” enterprise. Not all industrial Wi-Fi platforms are created equal, and one of the major questions facing the ongoing development of smart infrastructure centers on how to ensure that these networks are secure and compatible across multiple, and sometimes proprietary, technologies. This certainly opens up a veritable can of worms, including the idea of standardization, but without the driving force of reliable and robust communication technology, most smart city dreams will remain just that – a dream.

IoT Evolution Expo 2016 Recap

IoT Evolution Expo invaded Las Vegas this week by taking over Caesars Palace. The conference focus was to be a premier source of information needed to help drive your enterprise forward with the latest in IoT applications. A few of the tracks found this year at IoT Evolution included IoT Security, Fog Computing and IoT Enterprise. Overall this expo gave attendees the chance to listen to various talks and panel discussions, as well as hands-on demos on the exhibitor floor, and evening networking nights with industry experts and peers. Here are some of the posts during the event: Diving into the IoT Evolution sessions, we learn the weakness of our smartphone. Godfrey Chua, analyst at Machina Research, informs us that the smartphone can be a very weak link in IoT and M2M communications when it is used as a remote control. And…IoT Evolution continued with more panel discussions. Yann Kulp, VP SmartSpace North America with Schneider Electric tells us that, the panel with GE, Amazon, US Celluar and Argus Insights offered intriguing updates with the use of Wiser Air in your home and other Wi-Fi IoT applications. FreeWave was fortunate to participate this year on both the Oil and Gas: Pirates and Protection, as well as the Brown Field Round Table: What to do when it’s too late to start again panel discussions. The Pirates and Protection panel give us all a chance to dive deeper into the critical industries and what IoT secure options area available for these remote locations. My second panel of the night with the Brown Field Round Table gave attendees to hear real world case study examples of Sensor-2-Server implementation challenges with blending older SCADA systems with the latest IoT solutions for continuous real-time results.  Time to see an IoT application at work! James Brehm & Associates tried their hand at capturing this IoT conference with virtual reality technology. A new solution from RICOH THETA. The 360 angle is best viewed prior to hitting up Margaritaville. Interesting to see the “Workspaces & IoT” concept discussed as well. Digital workspaces takes center stage at IoT Evolution as Global Workspace Analytics reports 3.7 million U.S. employees now work from home. Cynthia Artin with IoT Evolution informs us that,”while the IoT is arguably taking off faster in more industrial domains (factories, farms, transportation), and has the most “sizzle” in consumer domains (smart homes, smart cars, fitness wearables), there is new energy forming around IoT enhanced offices.” Now as this year’s IoT conference comes to a close, we remember all the ways IoT will change our enterprise and our life this year. One thing is clear, the more we innovate, the more we strive to become more efficient, automated and safety operated within fog computing and cloud applications. We hope you have enjoyed this week’s roundup, as always tells us about your IoT highs and lows.

Berg Insight: Bright Days Ahead For Wireless Automation

A recent report published by Berg Insight details the bright future ahead for Industrial IoT through the implementation of wireless automation technologies. Berg Insight senior analyst Johan Svanberg made note that higher levels of automation and IoT solutions enable “shorter lead times, lower inventories, increased throughput as well as more flexibility and the ability to respond faster to changing customer needs.” The wireless IoT device market is served by a multitude of players from various backgrounds including global automation solution providers, automation equipment and solution vendors, industrial communication specialists and IoT communication specialists. This new report from Berg Insight informs us that: 2015 estimate of wireless devices for industrial automation applications reached 4.8 million units worldwide. Wireless devices installed for industrial applications have a forecasted growth rate of 27.7 percent from 14.3 million connections at the end of 2015 to 62.0 million devices by 2021. Key Findings from Berg Insight: Wireless connectivity is instrumental in the Internet of Things era and the use of wireless solutions in industrial automation is increasing rapidly at all levels of automation systems. Industrial automation systems utilize wireless communication to connect remote and local facilities and equipment to increase operational efficiency. A wireless automation system contains a mix of network technologies, equipment and systems including enterprise and automation systems, network equipment, control devices and field devices. The most common wireless technologies in industrial automation include cellular, 802.11.x Wi-Fi, proprietary unlicensed ISM radio, Bluetooth, various LPWAN technologies and 802.15.4 based protocols such as WirelessHART, ISA100.11a and ZigBee. Berg Insight estimates that shipments of wireless devices for industrial automation applications, including both network and automation equipment, reached 4.8 million units worldwide in 2015. Growing at a compound annual growth rate of 25.1 percent, shipments are expected to reach 18.3 million by 2021. The installed base of wireless devices in industrial applications is forecasted to grow at a compound annual growth rate of 27.7 percent from 14.3 million connections at the end of 2015 to 62.0 million devices by 2021. Wi-Fi is widely used for backbone communications as well as in monitoring and control applications within factory automation where Industrial Ethernet has got a strong foothold. Bluetooth is also popular – often as a point-to-point wire-replacement between for example a mobile HMI solution and a field device or control unit. 802.15.4 networks are often used to connect wireless sensors and instrumentation in process automation. Cellular connectivity is typically used for backhaul communication between plants, connecting remote devices in long haul SCADA applications and for third party access to machinery and robots. LPWAN technologies are increasingly used in certain low data, long range applications. Most of the major vendors of wireless IoT devices in industrial automation offer a wide range of devices with various wireless technologies in order to support many different applications. Key Takeaways, According to Berg Insight: Companies are now deepening the integration between industrial automation systems and enterprise applications and the promise of IoT is getting more tangible by the day. Large multinational corporations are beginning to systematically develop and adopt best practices to maximise the benefits of IoT technology in every part of their organisations. IT/OT convergence, smart factories, Industry 4.0 and the Industrial Internet of Things are concepts which are part of the ongoing evolution of industrial automation. Innovation in sensors, wireless connectivity, collaborative robots, big data and cloud solutions along with seamless exchange of information between devices, systems and people paves the way for improved performance, flexibility and responsiveness throughout the enterprise value chain. For more information, read the full report from Berg Insight.

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.