IIoT News Headlines: Trains, Agriculture, Underwater and More

Industries around the world are being transformed by the Industrial IoT. We recently shared a blog with a report that estimates IIoT will experience explosive growth and approach one trillion dollars by 2025. From trains and under water applications, to agriculture, we are already seeing IIoT expand its reach today. However, we continue to see security as one of the biggest challenges – which continues to top news headlines. Below are some of the recent IIoT stories that have caught our attention: How Siemens Is Using Big Data And IoT To Build The Internet Of Trains By: @BernardMarr | Published on: @Forbes “Siemens AG is one of the world’s largest providers of railway infrastructure, serving rail operators in over 60 countries. Through harnessing Big Data, sensors and predictive analytics they say they can now guarantee their customers close to 100% reliabilit It calls this the “Internet of Trains” – the on-rails segment of the wider ‘Internet of Things’ concept which describes how everyday objects of all shapes and sizes can now be connected together online and given the ability to communicate and capture data for analytic purposes.” Agriculture Is The No. 1 Opportunity For African Internet Of Things, Security The No. 1 Challenge By Tom Jackson | Published on: @AFKInsider “Agriculture, Africa’s largest economic sector, is likely to be central to the growth of IoT. There are many examples around the world where value can be unlocked from enhanced efficiencies along the value chain. Mining, oil and gas, telecommunications and manufacturing will have to adopt IoT to improve efficiencies.” The Internet of Underwater Things Published on: @NauticExpo_eMag “The development of an Internet of Underwater Things (IoUT), transmitting data throughout the ocean could make possible a system of roaming, autonomous vehicles and underwater sensors, all communicating with each other and relaying information to networks above the surface. This could be used for a wide range of submarine tasks, from pipeline repair and shipwreck surveys to seismic detection and ecological monitoring.” IIoT and The Cyberthreat: The Perfect Storm of Risk By: @ChrisGrove_Geek | Published on: @MBTwebsite “Many of these newfound risks did not previously exist, mostly due to the lack of interconnectivity and the network ‘air-gap’ — which has become a thing of the past. As industrial organizations race to keep up with advances in manufacturing technologies, IT is increasingly encroaching into the OT world. It’s no longer uncommon to find IT technologies like Ethernet, Wi-Fi, the Cloud and cybersecurity products like virus scanners, firewalls, Intrusion Detection/Prevention Systems and Security Information/Event Management (SIEM) products being managed outside the purview of IT.” It will be interesting to see how the IIoT continues to transform industries. What are some of the interesting use cases you are seeing as the IIoT growes? What are your biggest security concerns when it comes to IIoT?
Can Oil and Gas Keep Up with Digital Disruption?
The oil and gas industry has faced transformational potential in the last several years. As a critical piece of infrastructure for nearly every industry – and the economy – it’s ability to keep pace with the lightning rate of technological upheaval has been challenged. The convergence of IoT, the Cloud and Big Data has created a whirlwind of possibilities, but the major challenge will be whether the industry can successfully unify its data collection and transport at the necessary scale. There are several factors that will determine the ultimate success of this data: hardware capable of handling the consistently rugged environment, reliable connectivity, a general consensus on the best programming language for widespread use, and the applications capable of transforming Big Data into Smart Data. Rugged Hardware Most well pads are set in remote environments where the conditions are rugged or downright extreme. Not only are RF communications greatly affected by these conditions, but as the connectivity shifts toward (potentially) remote WiFi, then the devices must not only be more sophisticated, but that sophistication must be ruggedized as well. We recently published a case study that shows how our radios held up in a cool use-case in Antarctica for data collection in an extremely harsh environment. Granted, most oil companies are not looking Antarctica as a possible drilling location, but the visual does a good job of showing just how rugged the hardware needs to be. It cannot fail when delivering data to companies, as that data is more important than ever. Reliable Connectivity There are several different methods for connectivity at remote locations, but two that are gaining ground on traditional systems are Frequency Hopping Spread Spectrum (FHSS) and WiFi. Of the two, WiFi faces the greatest obstacles because it relies on several different transfer or booster points, but its strengths as a transport method are starting to outweigh some of those challenges. FHSS has been around for quite a while, but the technology, surprisingly, is still somewhat misunderstood. The ripple effect from its applications are felt throughout many industries, but the key differentiators are its consistency and reliability. Programming Languages Today, there is hardware on the market that is capable of putting proprietary, third-party applications at the edge. But, in order for these apps to be effective, the industry needs to find the programming language that best serves the need. It’s similar to when personal computers were first hitting the market. Each PC company wanted its computer to run its own kind of software, but the industry ultimately realized that best chance for success was to create a standard. Since then, even though open source is still a critical piece of software development, most PCs and other platforms can basically run the same kind of software. This same approach to standardization needs to be taken with programming languages or the battle for supremacy will continue to fracture an industry at a time when it needs cohesion for maximum growth. Edge Applications Speaking of finding a unified programming language, the result of that will be an explosion of applications that can be deployed on the aforementioned hardware. Once companies have the ability to create these applications to fit specific needs, then they will be able to take Big Data and turn it into Smart Data. A hallmark of the Industrial IoT, and what separates it from basic machine-to-machine communication, is the intelligence. Smarter applications means smarter data means more efficiency. Many of these platforms are still in their infancies, but we’ve seen evidence of a strong groundswell bringing these to the forefront. Ultimately, if these four components can come together in the right way, the oil and gas industry will be able to reap the benefits. And, frankly, they will be reaping these benefits long before other industrially oriented markets. Aligning these needs is not easy, but the potential exists as long as oil and gas companies embrace the disruption and unify the data.
Industrially Hardened Time Keeping
Today, a wide variety of industries with outdoor OT assets require technology that can connect the assets to a modern communication network. Depending on the application, the solution is not always as simple as slapping on a cellular or standard WiFi solution. For one, many industries have assets located in remote locations where cellular coverage is limited and long range communication is required. The OT network must also be highly secure and have the ability to avoid interference. Additionally, any outdoor communication network is subject to weather and natural elements. The best hope for maintaining reliable, secure, real-time connectivity is with a solution that is ruggedized, industrially hardened and proven to work in the most extreme environments. Recently we talked about wireless communication solutions used in Antarctica, that are performing under some of the most extreme conditions in the planet. These Frequency Hopping Spread Spectrum (FHSS)-based technologies are built to last and perform with a secure connection. Did you know that the same solutions have also made their way into the sport of boat racing? When November rolls around each year, rowing enthusiasts gather in Chatanooga, Tenn. For the Head of the Hooch race. A total length of 5,000 meters, it is one of the largest and fastest growing regattas in the U.S. Each year more than 2,000 boats race over the course of two days. Participants come in from all over the U.S. and the event has hosted international teams from Canada, Germany, Sweden and Australia. Real-Time Accuracy The race is organized by the Atlanta Rowing Club. In the early days, organizers relied upon stopwatches for keeping time. As the race grew and more boats participated, the manual method of time keeping was no longer feasible. Organizers needed a time keeping solution with a link strong enough to deliver race results in real-time in any weather condition. Organizers selected an industrially hardened wireless communication solution and used it in conjunction with a timing system built for downhill skiing races. The system offers precise timing accuracy – down to 1/10th second for each boat. The wireless solution uses FHSS technology that is typically used in utility-scale Industrial IoT (IIoT) applications. These types of solutions have been used for monitoring and control of outdoor assets in the utility industries for decades and have proven to ensure accurate, real-time connectivity in harsh, remote locations. Not only is the “hopping” nature of FHSS inherently secure, but there are solutions with AES-encryption and other advanced security features to further secure the network. The solutions also offer a range of 60 miles Line-of-Site (LOS), and have proven to be ideal for the Head of the Hooch race. Over the years, races have been conducted in cold, rainy, cloudy and/or windy weather, and the solution has reliably performed in all whether conditions present during the race. Rugged, industrially hardened communication solutions that are well known in the oil/gas and utilities markets – aren’t always the initial choice for connecting non-industrial outdoor networks. In some cases, decision makers in these markets may simply be unfamiliar with the benefits of FHSS. What they need to know is that FHSS solutions have been trusted for years to provide long-range, real-time connectivity, and they are often ideal for a variety of use cases outside of industrial markets. Read the full Head of the Hooch case study here: https://www.freewave.com/case-studies/head-of-the-hooch/
IIoT Top News — Security Remains Top of Mind
Cybersecurity has been top of mind for industry experts and consumers alike. The WannaCry ransomware is putting a legitimate scare into affected companies, although many are apparently preparing to call the hackers’ bluff. Yesterday, another cyberattack was announced as well, and it has the potential to be far more lucrative for the developers. The common denominator between the two? A leaked exploit developed by the NSA that leverages a Windows file-sharing protocol. These attacks are indicative of the long-term game of cat and mouse that the government and private enterprise faces for the foreseeable future of security and counterintelligence. Moving forward, the growing network of connected devices for the Industrial Internet of Things (IIoT) faces similar security threats. This week, we found several stories demonstrating some of the solutions surrounding those potential security issues. The 9 Best Practices for IIoT from a Dell Security Expert At a recent presentation for 2017 Dell EMC World Conference, Rohan Kotian, Dell EMC’s senior product manager for IoT security, spoke about his nine best practices for improved IIoT security. His number one strategy? Simply understanding the concerns. Many IoT devices come out of the box with few security controls in place, and understanding the risk is the most important step in addressing them. In this article from Tech Republic, you can read Mr. Kotian’s other nine best practices, including studying the attack trends, classifying risk, and leveraging fog computing. IIoT Market Expected to Approach One Trillion Dollars by 2025 Grand View Research writes that the industrial Internet of Things will experience explosive growth over the next decade, going from a $109 billion industry in 2016 to an expected $933.62 billion by 2025. The massive market increase will be driven by a number of factors, one of which continued investment by government agencies and corporate leaders. As the report states, “The role of the Internet of Things (IoT) is increasingly becoming more prominent in enabling easy access to devices and machines. Government-sponsored initiatives and innovative efforts made by key companies, such as Huawei, GE, and Cisco, are anticipated to enhance the adoption of IIoT worldwide over the forecast period.” IIoT Presents Unique Security Challenges Security is always a top priority in the Internet of Things, but IIoT applications present unique challenges. In this article from CSO Online, Phil Neray, CyberX’s vice president of industrial cybersecurity, writes that despite the growth of IoT applications in oil, gas, electric, and pharmaceuticals, “The fact is that all of these devices were designed a long time ago.” That means IIoT innovators have the challenge of integrating the newest technology into systems that may be decades old. This sort of retrofitting can make security a real challenge and there are few experts available who have both the knowledge of legacy systems and the latest IIoT solutions. Sprint to Deploy LTW Cat 1 by End Of July The Internet of Things relies heavily on low-power communication protocols to perform, so a recent announcement on FierceWireless.com that Sprint will be releasing LTE Cat 1 by the end of July is music to IoT developer’s ears. LTE Cat 1 is designed to support low-power applications on the Sprint network such as vehicle telematics and industrial IoT applications. “As one of the leading enablers and solution providers of the internet of things, Ericsson believes in its power to transform industries and capture new growth,” said Glenn Laxdal, head of Network Products for Ericsson North America. “Ericsson looks forward to partnering with Sprint to deploy Cat M1 next year and bring the transformative power of IoT to the Sprint Nationwide network.” The announcement also noted that Cat M would be following in mid-2018. TE Cat M1 and LTE Cat NB1 will support other applications requiring ultralow-throughput and power consumption.
FreeWave Named as One of “20 Most Promising Wireless Solution Providers 2017”
Today, CIO Review published it’s list of the “20 Most Promising Wireless Solution Providers 2017,” and FreeWave is excited to be included in that list along with many other notable industry leaders! CIO Review writes, “FreeWave delivers best-in-class wireless platforms for secure and cost-effective control, transport and collection of IIoT data.” Among other companies included in this report are Qualcomm, Mojo Networks, Brocade Communication Systems and NetGear. For the last two years, we have focused our new product engineering on developing a comprehensive collection of communication platforms, an Industrial IoT programmable radio (IPR), ruggedized WiFi platforms, and products with mesh networking and frequency hopping spread spectrum (FHSS) capabilities. In the last year, we’ve announced several new products designed to service a wide range of IIoT applications, including a pilot program for our IPR where third parties can develop proprietary IIoT apps for Edge and Fog Computing. Join the ZumLink IPR Pilot Program today! https://t.co/bWVQM8Arun #IIoT #IoT #programming #AppDev #Wireless pic.twitter.com/Km06N4nukK — FreeWaveTechnologies (@freewavetech) April 5, 2017 It’s been an exciting 2017 so far, and we’re excited for what the future holds, both for FreeWave and for the IIoT industry as a whole!
IoT News Roundup Topics of the Week: Big Headlines in Early 2017
The Internet of Things (IoT) continues to drive headlines in early 2017. It seems like every day we are seeing a flow of news stories about a more connected world. We’ve been watching some of the IoT and Industrial IoT (IIoT) headlines across the trades and have compiled some of our recent favorites. IoT News Headlines Forbes: HR can use big data to drive engagement, predict success By Valerie Bolden-Barrett| Published on @hrdive “Forbes Human Resource Council says HR can use big data in the same manner as key performance indicators and retention metrics to carry out organizational goals. The council offers six ways HR can leverage data.” “With all the big data and technological advances at HR’s disposal, over reliance on metrics can ignore employees’ human needs. Engaging employees sometimes can be a simple as acknowledging them for a job well done or asking for their input in a major decision affecting their work.” Lady Gaga’s Halftime Show Drones Have a Bright Future By @brbarrett | Published on @WIRED “Each drone communicates wirelessly with a central computer to execute its dance routine, oblivious to what the hundreds of machines around it are doing. The system can adapt on the, er, fly, too. Just before showtime, the computer checks the battery level and GPS signal strength of each drone, and assigns roles accordingly. Should a drone falter during the show, a reserve unit takes over within seconds. All of which is pretty cool in its own right. But making it work for the biggest television event of the year takes a whole different level of planning.” How Service Relationship Management and the IIoT Are Keeping Transportation on the Right Road By Michael Riemer | Published on @IoTJournal “In 2016, the Internet of Things went mainstream, but in 2017 we expect the Industrial Internet of Things (IIoT) to transform operations across numerous industries. Also known as the Industrial Internet, the IIoT enables machine-to-machine (M2M) communication of usage, performance and health metrics. There is quite a buzz around using this data, along with machine learning and other predictive algorithms, to help anticipate and eliminate potential causes of downtime. Nowhere is this more evident than in the commercial asset service ecosystem. Trucking fleets, construction assets, agriculture and power-generation equipment are all susceptible to costly unscheduled downtime and generally long repair cycles.” China is Now the World’s Largest Solar Power Producer By @luchanglu| Published on @DigitalTrends “As it stands, solar energy represents only one percent of the country’s energy output. But this may soon change as China devotes more and more of its attention towards clean energy. The NEA says that China will seek to add more than 110 gigawatts within the next three years, which could help the nation up the proportion of its renewable energy use to 20 percent by 2030. Today, it stands at 11 percent.” We predicted that 2017 would be a transformative year with a lot of innovation and smarter data, especially within the IIoT realm. These recent headlines are certainly tracking along with those insights. It will be interesting to see how IIoT continues to shape markets and change the way we do things.
Energy and Excitement at DistribuTECH 2017
This week we attended DistribuTECH 2017 with several thousand of the leading minds in technology, education and innovation for utilities, Smart Grid and municipalities. We had many great conversations about the direction of Industrial IoT (IIoT) and the all-encompassing digital technology shift. At the FreeWave booth we led many demonstrations of our latest technology. We also shared how our fellow attendees can achieve smart data at the Edge. Here is a small snapshot of the excitement and action from the show: FreeWave at DistribuTECH We had a lot to share at DistribuTECH this year. In addition to providing product demos at our booth, we just launched several important company, product and partnership announcements. Here’s the run-down on what we launched this week: New IIoT Products & Two New Partnerships Introduced at DistribuTECH Zumlink Z9-C and Z9-T Radios: FreeWave introduced the Zumlink-Z9-PE last Fall, but now it brings the next generation, high performance platform to market. ZumLink is the underpinning of the company’s go-forward IIoT strategy for IIoT and embedded radio applications. The Z9-C and Z9-T deliver high speed Frequency Hopping Spread Spectrum (FHSS) functionality in a radio module that is half the size of a credit card. FreeWave and Systech application partnership: Together with Systech, we announced an industrial Tank Level Control application that resides on and executes from FreeWave’s ZumLink IIoT Programmable Radio for edge networks. The new application features an easy-to-use “ITTT (If This Then That)” process control programming interface that will control analog, digital and RS485 sensors linked to the ZumLink programmable radio. The FreeWave ITTT App is designed for a user-friendly experience and requires no previous programming knowledge or practice. Technology partnership with E2E Technologies: E2E is a comprehensive solutions provider specializing in communication architecture design, implementation and network management. E2E’s Stingray Network Management System (NMS), supports the full array of FreeWave’s industry-leading wireless communication solutions and is optimizable for IT professionals looking to manage individual components of a limited IIoT or M2M communications system within a larger IT network management framework. The New FreeWave We officially unveiled a new look and website that reflects our move to the next generation of the industrial IoT: The Programmable Edge and Fog Computing. The new FreeWave visually projects our future-focused mission to help organizations around the world connect and gain valuable intelligence from devices – even in the most challenging of locations and conditions – anytime, anywhere in a secure, reliable fashion. This week has represented several major milestones for FreeWave, and launching it all at DistribuTECH was the perfect platform for sharing both our news and the future direction of FreeWave. What do you think about the new FreeWave website?
2017 IIoT Prediction Series, Part 5: Major Public Utility Company Closes Doors
As 2017 kicks into full gear and a particularly interesting 2016 fades into the rearview mirror, we took a look around the IIoT landscape to see what this year might potentially have in store. Today, we wrap up the 2017 series – let us know what you think! On Tuesday, we started our predictions by looking at the potential development of Fog Computing at the Edge and its impact on cybersecurity. Wednesday, we predicted that the rise of IIoT applications will outpace consumer IoT apps. Thursday, we wrote about the challenge facing IIoT businesses as the workforce ages and new skills are needed for the ongoing IT/OT Convergence factor. On Friday, we predicted that the growth of smart cities infrastructure would force a connectivity standard for the IIoT industry. A Public Utility Closure in 2017 The maturation of interoperability standards and evolution of remote data collection technologies are forcing critical infrastructure and utility organizations to adapt at a new pace, in light of aging infrastructure and high percentages of the workforce that are nearing retirement. Existing management continues to struggle to match the IT and operations resources needed to build a comprehensive, integrated portfolio of applications that must work together to support the organization’s goals. The prediction A public utility company will close its doors in 2017 due to challenges surrounding the adoption and implementation of modern IoT technologies. There are numerous forces that support the prediction. Here’s our take on the big ones: Are you Taking Advantage of Fog Computing at the Edge? According to analysts, utility organizations are becoming more comfortable hosting critical infrastructure data and applications in the Cloud. But, in an effort to further optimize processes and shorten response times, utilities need to explore ways to host applications at the device/sensor level (i.e., the Edge otherwise known as Fog Computing). A decentralized network architecture that brings computing power closer to where data is generated and acted upon enables utilities to analyze, control and automate closer to the “Things” in the Industrial Internet of Things. In electric power, for example, where even milliseconds are vital, certain processes can move away from the Cloud and closer to the Edge. In an industry where cloud computing presents its own sets of challenges, can utilities go one step farther to look at new ways to optimize the “things” at the edge? IT-OT Convergence Presents Plenty of Challenges With identifiable business benefits and rapidly developing technologies that are closing the IT/OT divide, there are functional and operational differences between IT and OT groups that exist and complicate integration or convergence. IT and OT groups typically have fundamentally different charters, focus and personnel within their respective organizations. The challenges to IT/OT convergence are not the sensors, hardware, software or technology, but how each group perceives each project or opportunity and in turn, the solutions, which are skewed by their respective domains. In order for IT/OT convergence to be successful, communication is essential and in turn, there needs to be a clear understanding of each group’s roles – something we see utility organizations struggle with mightily, especially as an aging workforce butts heads with the next generation of digital-centric employees. However, the careful selection of technology for IIoT or industrial applications can help drive the convergence of IT/OT systems. For example, in electric utilities, the rollout of Advanced Metering Infrastructure (AMI) and Distribution Automation (DA) networks is truly an OT application. The source of the data will fuel IT/OT convergence because it is the data analytics applications such as outage detection, fault management, prepay and others that bring value to the Smart Grid. If utilities can proactively take a systems level view of its infrastructure and integrate legacy systems with modern IT systems, the convergence of IT/OT groups may prove less strenuous. Cyber-threats to the Utility Utilities are at the forefront of the Industrial IoT with complex and comprehensive networks for advanced metering infrastructure, energy management, distribution management and substation automation. The estimated growth in IIoT applications for utilities and energy industries will increase to more than 1.5 billion devices by 2020. This explosive growth in networks, smart sensors and devices, and automated systems requires utilities to address, implement and monitor the security of their data networks because these are the networks providing command and control of critical infrastructure that is the Smart Gird. As technology has evolved, so has the intelligence and sophistication of cyber terrorists and their tactics. If utilities do not build a comprehensive security layer, especially across its internet-connected systems, there is little faith they’d be able to combat against such tactics as Denial of Service and Intrusion – the two top threats according to the Federal Communications Commission (FCC). If utilities don’t invest in hardened/proven networking and communications equipment, network access control programs, data encryption strategies, advanced monitoring technology and explore various other tactics for limiting exposure to harmful cybersecurity threats, they may be forced out of business anyways. Today, it is not a matter of “if” a cyber-attack is going to take place, but when. We hope you are ready. All in All We hope this prediction is one that doesn’t come to light in 2017, especially with all the direct investments being made in our critical infrastructure projects across the nation. However, a competitive organization is both agile and proactive in meeting market demands – something utilities need to learn from as business continues. That does it for our list of 2017 IIoT predictions – hope you enjoyed and please be sure to send your questions and comments below!
2017 IIoT Prediction Series, Part 3: IT/OT Convergence & the Next-Gen Workforce
As 2017 kicks into full gear and a particularly interesting 2016 fades into the rearview mirror, we took a look around the IIoT landscape to see what this year might potentially have in store. We will be unveiling five IIoT-related predictions throughout this week and into next, so stay tuned and let us know what you think! On Tuesday, we started our predictions by looking at the potential development of Fog Computing at the Edge and its impact on cybersecurity. Yesterday, we predicted that the rise of IIoT applications will outpace consumer IoT apps. FreeWave Predictions 2017 As our prediction series continues, we’d like to examine the industrial IoT (IIoT) workforce. Most of the industries that leverage IIoT face an uncertain future as they navigate their own digital transformation, coupled with the pressures of an aging workforce. The biggest challenge affecting IoT talent recruitment is the skills gap – there are not enough qualified applicants to take on new digital-centric, IT roles. From a business perspective, IT/OT convergence further complicates the issue. Enterprises are transforming the way they operate and it impacts everyone – especially the folks on the operations side dealing with legacy systems. Each of these factors has created a talent gap for many organizations. Our IoT Recruitment Prediction Recruitment of IoT talent will continue to be a challenge, incentivizing private enterprises to directly fund secondary education programs to nurture the next generation of a digital-centric workforce. The Business Problem As organizations and enterprises reorganize under the IT umbrella to address new technology opportunities, cybersecurity threats and work towards creating a connected enterprise – there is an underlying business problem. IT teams need better visibility and control of assets in the field while learning how to integrate these people and systems into modern IT practices. Meanwhile, on the OT side, there is an entire workforce that excels at managing and troubleshooting existing legacy systems, but lacks the potential skillsets to help with new technology demands and data analysis. IT/OT convergence is challenging for many businesses and it affects all aspects of the organization. Recruitment and Solution Recruitment challenges are impacting many industries. The Wall Street Journal reported the highest number of open positions in 15 years for the manufacturing industry because the talent pool lacks the skills for the job. As IoT connects and automates more processes, this gap will only continue to grow if nothing is done proactively to change it. There also is the question of whether organizations should bring in new talent or nurture existing talent. In an effort to overcome some of these challenges, we will see enterprises (not IoT vendors) to privately fund secondary education programs to help identify and create a more skilled workforce. In addition to standard HR recruitment and training practices, we expect to see more tactics such as IoT hackathons for the industrial sector, software development and digital/IoT centric accreditations, private contests, internal skill development workshops and IIoT user conferences. This wider investment in education will benefit both the existing, aging workforce and the incoming, next-generation of workers. Stay tuned for our next prediction as we explore the future of Smart Cities across the globe.
IIoT Top News: The Future of Wireless
Where wires once ruled the day, wireless data solutions are now entrenched into the very fabric of the business. It will be interesting to see what the future of wireless technology will be able to tackle. This past week, ITU Radio Communication Assembly met to figure out that very thing. The ITU only meets every three to four years, so it is important that they covered the current and expected wireless resolutions. Topping the list was a push for 5G systems expected to become a reality by 2020. 5G will offer extremely high definition video services, real-time low-latency applications and overall expansion of IoT. Yet another key point solved by the ITU meeting is that “RA-15 recognized that the globally connected world of IoT builds on the connectivity and functionality made possible by radio communication networks and that the growing number of IoT applications may require enhanced transmission speed, device connectivity, and energy efficiency to accommodate the significant amounts of data among a plethora of devices.” As the bright future of wireless grows across the globe, it will continue to evolve and transform the way we use wireless in our daily lives. ISA reported this week that automation is essential for the next-generation of industrial wireless. Businesses need to be switching to high-speed broadband wireless in order to capitalize on the technological applications available to move those industries forward. This surge to operate wirelessly has created a crowded technological highway, with everyone wanting their message to be heard. DARPA has recognized this noise and developed a RadioMap to detect radio frequency (RF) spectrum congestion. RadioMap is able to transmit this information through the radios already deployed for various reasons. This unique program helps create plans of action by identifying times when the frequency usage is jammed or clear, thus informing them of the best times to communicate. Now that the wireless traffic has been sorted, let’s consider the possibility of wireless power solutions. According to Oil Price, wireless power is already in use in some commercial spaces, and will continue to gain more support as technology improves. Michael McDonald with Oil Price boldly predicts wireless power could be used to support the massive energy needs of the defense and healthcare industries by 2016. Unfortunately, not everyone agrees that wireless technology has been a seamless transition. ECN recently asked a handful of industry experts about the challenges they face as they integrate wireless IoT into their business. For example, Vera Jorkitulppo, a senior product manager of GE’s embedded power product line at Critical Power Business, believes, “At the other end of the radio link, there will be a multitude of diverse IoT devices developed by innovative companies with new solutions to real-world consumer or industrial problems.” Now, the next-generation of wireless technology may have its challenges, but, overall, the future looks bright, so put on some shades and enjoy this evolution. Hope you enjoy this week’s reading. As always, tell us what we missed! The Future of Wireless Communication (MyBroadband) Last week, the ITU Radio Communication Assembly met to set the future direction of wireless communication. At this year’s assembly, Hans Groenendaal from mybroadband reported back that they had “reached significant decisions that will influence the future development of radio communications worldwide in an increasingly wireless environment.” Industrial Wireless Evolution (ISA) Establishing the next generation of industrial wireless classification, system requirements, I/O and network capabilities for the industry. Soliman Al-Walaie writes, “Wireless technology is an essential business enabler for the automation world.” What Wireless Networking Challenges Do You Foresee with the Onset of IoT? (ECN Mag) Jamie Wisniewski asked an assortment of experts what they see as possible wireless network problems with the integration of IoT. Greg Fyke, a marketing director of IoT wireless products at Silicon Labs, suggests that “There are three key wireless networking challenges for successful Industrial Internet of Things (IIoT) implementation, including reliable communication, security and control.” Darpa’s RadioMap Detects RF Spectrum Congestion (GCN) An interconnected connected wireless world has created congested airways, thus making the management of military communication and intelligence gathering radio frequencies of critical importance. “RadioMap adds value to existing radios, jammers and other RF electronic equipment used by our military forces in the field,” said John Chapin, DARPA program manager. Will 2016 Be the Year of Wireless Energy? (Oil Price) Oil Price looks at the possibility of wireless energy being able to support defense, healthcare and other massive energy needs in the near future, maybe even by 2016. Michael McDonald’s research shows that, “Wireless power has been a dream of mankind’s for decades, but the technology finally appears to be gaining some traction.”