Industrially Hardened Time Keeping

Today, a wide variety of industries with outdoor OT assets require technology that can connect the assets to a modern communication network. Depending on the application, the solution is not always as simple as slapping on a cellular or standard WiFi solution. For one, many industries have assets located in remote locations where cellular coverage is limited and long range communication is required. The OT network must also be highly secure and have the ability to avoid interference. Additionally, any outdoor communication network is subject to weather and natural elements. The best hope for maintaining reliable, secure, real-time connectivity is with a solution that is ruggedized, industrially hardened and proven to work in the most extreme environments. Recently we talked about wireless communication solutions used in Antarctica, that are performing under some of the most extreme conditions in the planet. These Frequency Hopping Spread Spectrum (FHSS)-based technologies are built to last and perform with a secure connection. Did you know that the same solutions have also made their way into the sport of boat racing? When November rolls around each year, rowing enthusiasts gather in Chatanooga, Tenn. For the Head of the Hooch race. A total length of 5,000 meters, it is one of the largest and fastest growing regattas in the U.S. Each year more than 2,000 boats race over the course of two days.  Participants come in from all over the U.S. and the event has hosted international teams from Canada, Germany, Sweden and Australia. Real-Time Accuracy The race is organized by the Atlanta Rowing Club. In the early days, organizers relied upon stopwatches for keeping time. As the race grew and more boats participated, the manual method of time keeping was no longer feasible. Organizers needed a time keeping solution with a link strong enough to deliver race results in real-time in any weather condition. Organizers selected an industrially hardened wireless communication solution and used it in conjunction with a timing system built for downhill skiing races. The system offers precise timing accuracy – down to 1/10th second for each boat. The wireless solution uses FHSS technology that is typically used in utility-scale Industrial IoT (IIoT) applications. These types of solutions have been used for monitoring and control of outdoor assets in the utility industries for decades and have proven to ensure accurate, real-time connectivity in harsh, remote locations. Not only is the “hopping” nature of FHSS inherently secure, but there are solutions with AES-encryption and other advanced security features to further secure the network. The solutions also offer a range of 60 miles Line-of-Site (LOS), and have proven to be ideal for the Head of the Hooch race. Over the years, races have been conducted in cold, rainy, cloudy and/or windy weather, and the solution has reliably performed in all whether conditions present during the race. Rugged, industrially hardened communication solutions that are well known in the oil/gas and utilities markets – aren’t always the initial choice for connecting non-industrial outdoor networks. In some cases, decision makers in these markets may simply be unfamiliar with the benefits of FHSS. What they need to know is that FHSS solutions have been trusted for years to provide long-range, real-time connectivity, and they are often ideal for a variety of use cases outside of industrial markets. Read the full Head of the Hooch case study here: https://www.freewave.com/case-studies/head-of-the-hooch/

IIoT Top News — Security Remains Top of Mind

Cybersecurity has been top of mind for industry experts and consumers alike. The WannaCry ransomware is putting a legitimate scare into affected companies, although many are apparently preparing to call the hackers’ bluff. Yesterday, another cyberattack was announced as well, and it has the potential to be far more lucrative for the developers. The common denominator between the two? A leaked exploit developed by the NSA that leverages a Windows file-sharing protocol. These attacks are indicative of the long-term game of cat and mouse that the government and private enterprise faces for the foreseeable future of security and counterintelligence. Moving forward, the growing network of connected devices for the Industrial Internet of Things (IIoT) faces similar security threats. This week, we found several stories demonstrating some of the solutions surrounding those potential security issues. The 9 Best Practices for IIoT from a Dell Security Expert   At a recent presentation for 2017 Dell EMC World Conference, Rohan Kotian, Dell EMC’s senior product manager for IoT security, spoke about his nine best practices for improved IIoT security. His number one strategy? Simply understanding the concerns. Many IoT devices come out of the box with few security controls in place, and understanding the risk is the most important step in addressing them. In this article from Tech Republic, you can read Mr. Kotian’s other nine best practices, including studying the attack trends, classifying risk, and leveraging fog computing.   IIoT Market Expected to Approach One Trillion Dollars by 2025   Grand View Research writes that the industrial Internet of Things will experience explosive growth over the next decade, going from a $109 billion industry in 2016 to an expected $933.62 billion by 2025. The massive market increase will be driven by a number of factors, one of which continued investment by government agencies and corporate leaders. As the report states, “The role of the Internet of Things (IoT) is increasingly becoming more prominent in enabling easy access to devices and machines. Government-sponsored initiatives and innovative efforts made by key companies, such as Huawei, GE, and Cisco, are anticipated to enhance the adoption of IIoT worldwide over the forecast period.”   IIoT Presents Unique Security Challenges Security is always a top priority in the Internet of Things, but IIoT applications present unique challenges. In this article from CSO Online, Phil Neray, CyberX’s vice president of industrial cybersecurity, writes that despite the growth of IoT applications in oil, gas, electric, and pharmaceuticals, “The fact is that all of these devices were designed a long time ago.” That means IIoT innovators have the challenge of integrating the newest technology into systems that may be decades old. This sort of retrofitting can make security a real challenge and there are few experts available who have both the knowledge of legacy systems and the latest IIoT solutions.   Sprint to Deploy LTW Cat 1 by End Of July   The Internet of Things relies heavily on low-power communication protocols to perform, so a recent announcement on FierceWireless.com that Sprint will be releasing LTE Cat 1 by the end of July is music to IoT developer’s ears. LTE Cat 1 is designed to support low-power applications on the Sprint network such as vehicle telematics and industrial IoT applications. “As one of the leading enablers and solution providers of the internet of things, Ericsson believes in its power to transform industries and capture new growth,” said Glenn Laxdal, head of Network Products for Ericsson North America. “Ericsson looks forward to partnering with Sprint to deploy Cat M1 next year and bring the transformative power of IoT to the Sprint Nationwide network.” The announcement also noted that Cat M would be following in mid-2018. TE Cat M1 and LTE Cat NB1 will support other applications requiring ultralow-throughput and power consumption.

FreeWave Named as One of “20 Most Promising Wireless Solution Providers 2017”

Today, CIO Review published it’s list of the “20 Most Promising Wireless Solution Providers 2017,” and FreeWave is excited to be included in that list along with many other notable industry leaders! CIO Review writes, “FreeWave delivers best-in-class wireless platforms for secure and cost-effective control, transport and collection of IIoT data.” Among other companies included in this report are Qualcomm, Mojo Networks, Brocade Communication Systems and NetGear. For the last two years, we have focused our new product engineering on developing a comprehensive collection of communication platforms, an Industrial IoT programmable radio (IPR), ruggedized WiFi platforms, and products with mesh networking and frequency hopping spread spectrum (FHSS) capabilities. In the last year, we’ve announced several new products designed to service a wide range of IIoT applications, including a pilot program for our IPR where third parties can develop proprietary IIoT apps for Edge and Fog Computing.   Join the ZumLink IPR Pilot Program today! https://t.co/bWVQM8Arun #IIoT #IoT #programming #AppDev #Wireless pic.twitter.com/Km06N4nukK — FreeWaveTechnologies (@freewavetech) April 5, 2017 It’s been an exciting 2017 so far, and we’re excited for what the future holds, both for FreeWave and for the IIoT industry as a whole!

IoT News Roundup Topics of the Week: Big Headlines in Early 2017

The Internet of Things (IoT) continues to drive headlines in early 2017. It seems like every day we are seeing a flow of news stories about a more connected world. We’ve been watching some of the IoT and Industrial IoT (IIoT) headlines across the trades and have compiled some of our recent favorites. IoT News Headlines Forbes: HR can use big data to drive engagement, predict success By Valerie Bolden-Barrett| Published on @hrdive   “Forbes Human Resource Council says HR can use big data in the same manner as key performance indicators and retention metrics to carry out organizational goals. The council offers six ways HR can leverage data.” “With all the big data and technological advances at HR’s disposal, over reliance on metrics can ignore employees’ human needs. Engaging employees sometimes can be a simple as acknowledging them for a job well done or asking for their input in a major decision affecting their work.” Lady Gaga’s Halftime Show Drones Have a Bright Future By @brbarrett | Published on @WIRED “Each drone communicates wirelessly with a central computer to execute its dance routine, oblivious to what the hundreds of machines around it are doing. The system can adapt on the, er, fly, too. Just before showtime, the computer checks the battery level and GPS signal strength of each drone, and assigns roles accordingly. Should a drone falter during the show, a reserve unit takes over within seconds. All of which is pretty cool in its own right. But making it work for the biggest television event of the year takes a whole different level of planning.” How Service Relationship Management and the IIoT Are Keeping Transportation on the Right Road By Michael Riemer | Published on @IoTJournal “In 2016, the Internet of Things went mainstream, but in 2017 we expect the Industrial Internet of Things (IIoT) to transform operations across numerous industries. Also known as the Industrial Internet, the IIoT enables machine-to-machine (M2M) communication of usage, performance and health metrics. There is quite a buzz around using this data, along with machine learning and other predictive algorithms, to help anticipate and eliminate potential causes of downtime. Nowhere is this more evident than in the commercial asset service ecosystem. Trucking fleets, construction assets, agriculture and power-generation equipment are all susceptible to costly unscheduled downtime and generally long repair cycles.” China is Now the World’s Largest Solar Power Producer By @luchanglu| Published on @DigitalTrends   “As it stands, solar energy represents only one percent of the country’s energy output. But this may soon change as China devotes more and more of its attention towards clean energy. The NEA says that China will seek to add more than 110 gigawatts within the next three years, which could help the nation up the proportion of its renewable energy use to 20 percent by 2030. Today, it stands at 11 percent.”   We predicted that 2017 would be a transformative year with a lot of innovation and smarter data, especially within the IIoT realm. These recent headlines are certainly tracking along with those insights. It will be interesting to see how IIoT continues to shape markets and change the way we do things.

Energy and Excitement at DistribuTECH 2017

This week we attended DistribuTECH 2017 with several thousand of the leading minds in technology, education and innovation for utilities, Smart Grid and municipalities. We had many great conversations about the direction of Industrial IoT (IIoT) and the all-encompassing digital technology shift. At the FreeWave booth we led many demonstrations of our latest technology. We also shared how our fellow attendees can achieve smart data at the Edge. Here is a small snapshot of the excitement and action from the show: FreeWave at DistribuTECH We had a lot to share at DistribuTECH this year. In addition to providing product demos at our booth, we just launched several important company, product and partnership announcements. Here’s the run-down on what we launched this week: New IIoT Products & Two New Partnerships Introduced at DistribuTECH Zumlink Z9-C and Z9-T Radios: FreeWave introduced the Zumlink-Z9-PE last Fall, but now it brings the next generation, high performance platform to market. ZumLink is the underpinning of the company’s go-forward IIoT strategy for IIoT and embedded radio applications. The Z9-C and Z9-T deliver high speed Frequency Hopping Spread Spectrum (FHSS) functionality in a radio module that is half the size of a credit card. FreeWave and Systech application partnership: Together with Systech, we announced an industrial Tank Level Control application that resides on and executes from FreeWave’s ZumLink IIoT Programmable Radio for edge networks. The new application features an easy-to-use “ITTT (If This Then That)” process control programming interface that will control analog, digital and RS485 sensors linked to the ZumLink programmable radio.  The FreeWave ITTT App is designed for a user-friendly experience and requires no previous programming knowledge or practice. Technology partnership with E2E Technologies: E2E is a comprehensive solutions provider specializing in communication architecture design, implementation and network management. E2E’s Stingray Network Management System (NMS), supports the full array of FreeWave’s industry-leading wireless communication solutions and is optimizable for IT professionals looking to manage individual components of a limited IIoT or M2M communications system within a larger IT network management framework. The New FreeWave We officially unveiled a new look and website that reflects our move to the next generation of the industrial IoT: The Programmable Edge and Fog Computing. The new FreeWave visually projects our future-focused mission to help organizations around the world connect and gain valuable intelligence from devices – even in the most challenging of locations and conditions – anytime, anywhere in a secure, reliable fashion. This week has represented several major milestones for FreeWave, and launching it all at DistribuTECH was the perfect platform for sharing both our news and the future direction of FreeWave. What do you think about the new FreeWave website?

2017 IIoT Prediction Series, Part 5: Major Public Utility Company Closes Doors

As 2017 kicks into full gear and a particularly interesting 2016 fades into the rearview mirror, we took a look around the IIoT landscape to see what this year might potentially have in store. Today, we wrap up the 2017 series – let us know what you think! On Tuesday, we started our predictions by looking at the potential development of Fog Computing at the Edge and its impact on cybersecurity. Wednesday, we predicted that the rise of IIoT applications will outpace consumer IoT apps. Thursday, we wrote about the challenge facing IIoT businesses as the workforce ages and new skills are needed for the ongoing IT/OT Convergence factor. On Friday, we predicted that the growth of smart cities infrastructure would force a connectivity standard for the IIoT industry. A Public Utility Closure in 2017 The maturation of interoperability standards and evolution of remote data collection technologies are forcing critical infrastructure and utility organizations to adapt at a new pace, in light of aging infrastructure and high percentages of the workforce that are nearing retirement. Existing management continues to struggle to match the IT and operations resources needed to build a comprehensive, integrated portfolio of applications that must work together to support the organization’s goals.  The prediction A public utility company will close its doors in 2017 due to challenges surrounding the adoption and implementation of modern IoT technologies.  There are numerous forces that support the prediction. Here’s our take on the big ones: Are you Taking Advantage of Fog Computing at the Edge? According to analysts, utility organizations are becoming more comfortable hosting critical infrastructure data and applications in the Cloud. But, in an effort to further optimize processes and shorten response times, utilities need to explore ways to host applications at the device/sensor level (i.e., the Edge otherwise known as Fog Computing). A decentralized network architecture that brings computing power closer to where data is generated and acted upon enables utilities to analyze, control and automate closer to the “Things” in the Industrial Internet of Things. In electric power, for example, where even milliseconds are vital, certain processes can move away from the Cloud and closer to the Edge. In an industry where cloud computing presents its own sets of challenges, can utilities go one step farther to look at new ways to optimize the “things” at the edge? IT-OT Convergence Presents Plenty of Challenges With identifiable business benefits and rapidly developing technologies that are closing the IT/OT divide, there are functional and operational differences between IT and OT groups that exist and complicate integration or convergence. IT and OT groups typically have fundamentally different charters, focus and personnel within their respective organizations. The challenges to IT/OT convergence are not the sensors, hardware, software or technology, but how each group perceives each project or opportunity and in turn, the solutions, which are skewed by their respective domains. In order for IT/OT convergence to be successful, communication is essential and in turn, there needs to be a clear understanding of each group’s roles – something we see utility organizations struggle with mightily, especially as an aging workforce butts heads with the next generation of digital-centric employees. However, the careful selection of technology for IIoT or industrial applications can help drive the convergence of IT/OT systems. For example, in electric utilities, the rollout of Advanced Metering Infrastructure (AMI) and Distribution Automation (DA) networks is truly an OT application. The source of the data will fuel IT/OT convergence because it is the data analytics applications such as outage detection, fault management, prepay and others that bring value to the Smart Grid. If utilities can proactively take a systems level view of its infrastructure and integrate legacy systems with modern IT systems, the convergence of IT/OT groups may prove less strenuous. Cyber-threats to the Utility Utilities are at the forefront of the Industrial IoT with complex and comprehensive networks for advanced metering infrastructure, energy management, distribution management and substation automation. The estimated growth in IIoT applications for utilities and energy industries will increase to more than 1.5 billion devices by 2020. This explosive growth in networks, smart sensors and devices, and automated systems requires utilities to address, implement and monitor the security of their data networks because these are the networks providing command and control of critical infrastructure that is the Smart Gird. As technology has evolved, so has the intelligence and sophistication of cyber terrorists and their tactics. If utilities do not build a comprehensive security layer, especially across its internet-connected systems, there is little faith they’d be able to combat against such tactics as Denial of Service and Intrusion – the two top threats according to the Federal Communications Commission (FCC). If utilities don’t invest in hardened/proven networking and communications equipment, network access control programs, data encryption strategies, advanced monitoring technology and explore various other tactics for limiting exposure to harmful cybersecurity threats, they may be forced out of business anyways. Today, it is not a matter of “if” a cyber-attack is going to take place, but when. We hope you are ready. All in All We hope this prediction is one that doesn’t come to light in 2017, especially with all the direct investments being made in our critical infrastructure projects across the nation. However, a competitive organization is both agile and proactive in meeting market demands – something utilities need to learn from as business continues. That does it for our list of 2017 IIoT predictions – hope you enjoyed and please be sure to send your questions and comments below!

2017 IIoT Prediction Series, Part 3: IT/OT Convergence & the Next-Gen Workforce

As 2017 kicks into full gear and a particularly interesting 2016 fades into the rearview mirror, we took a look around the IIoT landscape to see what this year might potentially have in store. We will be unveiling five IIoT-related predictions throughout this week and into next, so stay tuned and let us know what you think! On Tuesday, we started our predictions by looking at the potential development of Fog Computing at the Edge and its impact on cybersecurity. Yesterday, we predicted that the rise of IIoT applications will outpace consumer IoT apps. FreeWave Predictions 2017 As our prediction series continues, we’d like to examine the industrial IoT (IIoT) workforce. Most of the industries that leverage IIoT face an uncertain future as they navigate their own digital transformation, coupled with the pressures of an aging workforce. The biggest challenge affecting IoT talent recruitment is the skills gap – there are not enough qualified applicants to take on new digital-centric, IT roles. From a business perspective, IT/OT convergence further complicates the issue. Enterprises are transforming the way they operate and it impacts everyone – especially the folks on the operations side dealing with legacy systems. Each of these factors has created a talent gap for many organizations. Our IoT Recruitment Prediction Recruitment of IoT talent will continue to be a challenge, incentivizing private enterprises to directly fund secondary education programs to nurture the next generation of a digital-centric workforce. The Business Problem As organizations and enterprises reorganize under the IT umbrella to address new technology opportunities, cybersecurity threats and work towards creating a connected enterprise – there is an underlying business problem. IT teams need better visibility and control of assets in the field while learning how to integrate these people and systems into modern IT practices. Meanwhile, on the OT side, there is an entire workforce that excels at managing and troubleshooting existing legacy systems, but lacks the potential skillsets to help with new technology demands and data analysis. IT/OT convergence is challenging for many businesses and it affects all aspects of the organization. Recruitment and Solution Recruitment challenges are impacting many industries. The Wall Street Journal reported the highest number of open positions in 15 years for the manufacturing industry because the talent pool lacks the skills for the job. As IoT connects and automates more processes, this gap will only continue to grow if nothing is done proactively to change it. There also is the question of whether organizations should bring in new talent or nurture existing talent. In an effort to overcome some of these challenges, we will see enterprises (not IoT vendors) to privately fund secondary education programs to help identify and create a more skilled workforce. In addition to standard HR recruitment and training practices, we expect to see more tactics such as IoT hackathons for the industrial sector, software development and digital/IoT centric accreditations, private contests, internal skill development workshops and IIoT user conferences. This wider investment in education will benefit both the existing, aging workforce and the incoming, next-generation of workers. Stay tuned for our next prediction as we explore the future of Smart Cities across the globe.

IIoT Top News: The Future of Wireless

Where wires once ruled the day, wireless data solutions are now entrenched into the very fabric of the business. It will be interesting to see what the future of wireless technology will be able to tackle. This past week, ITU Radio Communication Assembly met to figure out that very thing. The ITU only meets every three to four years, so it is important that they covered the current and expected wireless resolutions. Topping the list was a push for 5G systems expected to become a reality by 2020. 5G will offer extremely high definition video services, real-time low-latency applications and overall expansion of IoT. Yet another key point solved by the ITU meeting is that “RA-15 recognized that the globally connected world of IoT builds on the connectivity and functionality made possible by radio communication networks and that the growing number of IoT applications may require enhanced transmission speed, device connectivity, and energy efficiency to accommodate the significant amounts of data among a plethora of devices.” As the bright future of wireless grows across the globe, it will continue to evolve and transform the way we use wireless in our daily lives. ISA reported this week that automation is essential for the next-generation of industrial wireless. Businesses need to be switching to high-speed broadband wireless in order to capitalize on the technological applications available to move those industries forward. This surge to operate wirelessly has created a crowded technological highway, with everyone wanting their message to be heard. DARPA has recognized this noise and developed a RadioMap to detect radio frequency (RF) spectrum congestion. RadioMap is able to transmit this information through the radios already deployed for various reasons. This unique program helps create plans of action by identifying times when the frequency usage is jammed or clear, thus informing them of the best times to communicate. Now that the wireless traffic has been sorted, let’s consider the possibility of wireless power solutions. According to Oil Price, wireless power is already in use in some commercial spaces, and will continue to gain more support as technology improves. Michael McDonald with Oil Price boldly predicts wireless power could be used to support the massive energy needs of the defense and healthcare industries by 2016. Unfortunately, not everyone agrees that wireless technology has been a seamless transition. ECN recently asked a handful of industry experts about the challenges they face as they integrate wireless IoT into their business. For example, Vera Jorkitulppo, a senior product manager of GE’s embedded power product line at Critical Power Business, believes, “At the other end of the radio link, there will be a multitude of diverse IoT devices developed by innovative companies with new solutions to real-world consumer or industrial problems.” Now, the next-generation of wireless technology may have its challenges, but, overall, the future looks bright, so put on some shades and enjoy this evolution. Hope you enjoy this week’s reading. As always, tell us what we missed! The Future of Wireless Communication (MyBroadband) Last week, the ITU Radio Communication Assembly met to set the future direction of wireless communication.  At this year’s assembly, Hans Groenendaal from mybroadband reported back that they had “reached significant decisions that will influence the future development of radio communications worldwide in an increasingly wireless environment.”   Industrial Wireless Evolution (ISA) Establishing the next generation of industrial wireless classification, system requirements, I/O and network capabilities for the industry.  Soliman Al-Walaie writes, “Wireless technology is an essential business enabler for the automation world.”   What Wireless Networking Challenges Do You Foresee with the Onset of IoT? (ECN Mag) Jamie Wisniewski asked an assortment of experts what they see as possible wireless network problems with the integration of IoT. Greg Fyke, a marketing director of IoT wireless products at Silicon Labs, suggests that “There are three key wireless networking challenges for successful Industrial Internet of Things (IIoT) implementation, including reliable communication, security and control.”   Darpa’s RadioMap Detects RF Spectrum Congestion (GCN) An interconnected connected wireless world has created congested airways, thus making the management of military communication and intelligence gathering radio frequencies of critical importance. “RadioMap adds value to existing radios, jammers and other RF electronic equipment used by our military forces in the field,” said John Chapin, DARPA program manager.   Will 2016 Be the Year of Wireless Energy? (Oil Price) Oil Price looks at the possibility of wireless energy being able to support defense, healthcare and other massive energy needs in the near future, maybe even by 2016. Michael McDonald’s research shows that, “Wireless power has been a dream of mankind’s for decades, but the technology finally appears to be gaining some traction.”  

Guest Post: Keep the Data Flowing in Oil and Gas

By Joyce Deuley, Sr. Analyst and Director of Content at James Brehm & Associates LLC State of the Industry This year has proved challenging for oil and gas companies: falling prices, crackdowns from environmental regulations, growing concern about the destabilization of land due to fracking, as well as an increasing gap between jobs and skilled engineers to name a few issues. Royal Dutch Shell, for instance, recently terminated its plans to drill off the Arctic coast of Alaska for the “foreseeable future”—this is after $7 billion dollars and more than five years spent on exploratory drilling (with disappointing results) and the purchase of costly leases and permits for the privilege to do so (Daily Mail). The Arctic Circle has been viewed by many as a “holy grail” in terms of rich oil and gas reserves—the largely untapped Great White North, if you will. Initiatives in the Baltic have also come under discussion lately, as Russia negotiates the political quagmire it has found itself in concerning territorial disputes. Still, it isn’t all doom and gloom. Our reliance on oil and gas for manufacturing, shipping, transportation, energy, and more hasn’t dissipated—rather, it will continue to increase with the rising population and result in rapidly expanding urbanization. More food will need to be shipped globally, more cars will be driven, more homes will be heated, more materials will need to be made, etc., providing rich opportunities for oil and gas companies to invest in scalable solutions, as well as to firmly root themselves as valued players in the market. Investors, and other interested parties, are paying close attention to the oil and gas markets to better determine how best to mitigate depleted reserves and improve overall productivity and efficiency: keeping their bottom lines low and profit margins high. To pull back from an environmental and global perspective on the state of the industry, let’s instead bring it into a sharp focus with its current business challenges. Problems with efficiency include legacy pipeline and refinery infrastructure that hasn’t been updated or modernized in decades, a shortage of skilled labor as qualified engineers approach retirement, the need for increased monitoring and control across remote areas, and the mission-critical need for the aggregation, interpretation and management of unprecedented amounts of data. But, effectively managing that data can present major challenges for oil and gas providers: with so many devices at the edge, they are practically drowning in the seemingly endless flood of information that is collected. The need to find reliable data management platforms that help remove complexities associated with data visualization is critical for these companies’ ability to identify and enact valuable business decisions. What to Do About It It is no secret that the Internet of Things (IoT) has proven to be disruptive across a myriad of markets. While the technologies and principles of the IoT have been around for decades, predominantly within the manufacturing and processing industries, its relatively nascent presence within the consumer electronics and wearables markets has helped rebrand the IoT with a level of “sexiness” it previously lacked. But at the heart of the IoT is a near-obsessive desire to decrease operational and deployment costs, meet compliance regulations and to dramatically increase productivity and efficiencies. The oil and gas industry happens to be one of the largest growing areas for IoT deployments and has found many ways to benefit from connected solutions, such as pipeline and wellhead monitoring. Oil and gas pipelines can span across hundreds of miles of rugged terrain. The ability to monitor such a territory can be challenging, as harsh winters and debilitating droughts, forest fires and or heavy rains can put stress on the integrity of a pipeline, plus the remote nature of its location can prevent technicians from being able to regularly service it. Another challenge is knowing when and specifically where a problem occurs. For instance, if there is a malfunction that results in a leak along one of the more remote sections of a pipeline and there is no sensor to alert someone, we could be looking at a nightmare of a situation: environmental damages, not to mention untold amounts of costly clean up, repairs and definitive losses to the oil and gas company at large. By utilizing connected sensors along the lengths of their pipelines, oil and gas companies can overcome these challenges and monitor flow, pressure, integrity of the pipeline and more. Empowered by the IoT, oil and gas providers can receive near real-time information about their entire operation, enabling decision makers to better manage their technicians, as well as improve overall production and reduce maintenance and operational costs. As oil and gas companies wait for the stock market to pivot from $50 a barrel, they need to look seriously at implementing business solutions that are going to help them weather this lull. The IoT provides many opportunities for oil and gas providers to tighten their belts by increasing efficiencies and production, ultimately reflecting in a more cushioned bottom line. Pipeline monitoring and control applications can help reduce non-productive times by up to 30%, which is just one small example of how dynamic transformations could be made by the IoT. About Joyce Deuley As Sr. Analyst and Director of Content, Joyce researches and interprets market trends, locates opportunities for growth, and researches the current happenings in the M2M and IoT space, providing our clients with up-to-date and actionable information. Joyce specializes in technical communication, translating complex data into layperson-accessible presentations, articles, and white papers. Additionally, Joyce manages, contributes, edits, and designs our newsletter, The Connected Conversation. She currently offices out of, and is a founding member of Geekdom, a tech accelerator-like co-working space in San Antonio, TX. Previously, Joyce worked as a Secondary Researcher at Compass Intelligence, learning the M2M markets alongside James Brehm. While at Compass Intelligence, she gained experience in market research, competitive analysis, content strategy, as well as qualitative research. Joyce graduated with a B.A. in English, focusing on Professional and Technical Communication, from the University of the Incarnate Word (UIW) in San Antonio. She

Ships that Sail Themselves

Is it time for ships to sail off on a journey by themselves? As the Internet of Things (IoT) connects the world, while the robotics industry continues to innovate, man and machine are merging together like never before. Unmanned aerial vehicles (UAVs) have impacted a number of industries from agriculture to security. If recent news is correct, it won’t be long before autonomous cars are traveling roads alongside us. Now, organizations and government agencies around the world are actively working to bring autonomous vessels to our oceans. What can we expect from unmanned ships operating in our largest bodies of water? IoT and robotics are being considered for a variety of commercial and military purposes at sea. For most of the world, it seems autonomous ships are in the testing phase, but there are big plans in the works around the globe: The British engine maker Rolls Royce Holdings, PLC is leading the Advanced Autonomous Waterborne Applications initiative with several other organizations and universities. The company is eyeing a timeline of remotely controlled ships setting sail by 2030 with completely autonomous ships in service by 2035. The timeline will be heavily dependent upon automation technologies’ ability to carry large amount of data from ship to shore to ensure safe operations. Recently, the UK’s Automated Ships Ltd and Norway’s Kongsberg Maritime, unveiled plans for a light-duty ship for surveying, delivering cargo to offshore installations and launching and recovering smaller remote-controlled and autonomous vehicles. “This ship is considered the world’s first unmanned ship for offshore operations and is being eyed for many uses including offshore energy, fish farming and scientific industries.” In the U.S., the Navy has begun to consider autonomous ships for a number of applications, but is cautiously approaching these new technology advancements. According to National Defense Magazine, “The Navy for now appears to be in no hurry to pour big money into drone ships and submarines. And there is little tolerance these days for risky gambles on technologies.” However, the article acknowledges that robots at sea could help do the jobs that are dangerous or costly for human operators, such as hunting enemy submarines, detonating sea mines, medical evacuations and ship repairs. The European Union (EU) appears to have a vested interest in sea robotics. As infrastructure costs rise for improving rails and roads, they have begun to seek alternative ways to move large quantities of cargo. According to Maritime Executive they have, “had a long-term goal of making short sea shipping more competitive with road and rail transport, which is under stress from the transportation bottlenecks caused by increasing volumes of internal trade.” As the EU faces massive infrastructure costs to upgrade road and rail, there is increased attention and effort directed at the “motorways of the sea.” The Defense Advanced Research Projects Agency (DARPA) has been testing a robotic ship called the “Continuous Trail Unmanned Vessel,” and has been running sea trials on its radar system. The radar is fastened to a parasail that enables heights of 500-1,500 feet. These are just a few of the autonomous vessel projects in the works. In order for unmanned vessels to operate, it is clear the ability to transport data in massive amounts will play a critical role in the success and safety of those sharing the sea with autonomous ships. As technologies evolve to meet these big data needs, we can eventually expect to see more unmanned vessels in the sea, improving offshore applications, making human jobs safer, and creating new efficiencies for organizations looking to optimize international trade.

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.