IIoT Edge Applications: Small SCADA

In a small SCADA environment, remote monitoring and automation are important tools for creating operational efficiency and ensuring cost-effective solution deployment. Real-time data in small SCADA environments enable programmable radios to act upon data at physical locations of the sensor or device. As such, processes can be remotely monitored and controlled without the Cloud. You still can send data to the Cloud, but only the data you need, when you need it. This frees up network bandwidth and minimizes latency significantly. In industries where even milliseconds count, this kind of Edge intelligence can mean the difference between ops in the red or ops in the black. We recently announced the release of our ZumDash application, which is hosted on our ZumIQ App Server, and can function agnostically across different I/O systems and networks. In a small SCADA environment, the ZumDash is ideal for real-time data aggregation and transmission. It is capable of running both at the Edge on hardware, as well as the Cloud, ensuring uninterrupted functionality. In an oil and gas setting, ZumDash can empower field operations managers via the intuitive dashboard display that can be customized to fit individual needs. Additionally, the app itself is powered by Node-RED programming, making it easy to configure on the fly, along with the ability receive real-time alerts for any operational needs like inspection, parts replacement, or troubleshooting. Essentially, having a remote monitoring and automation system powered by programmable Edge radios that can host proprietary third-party apps like ZumDash enable companies to more effectively deploy resources, saving time and money across the board. For any companies in the Industrial IoT space – or companies that rely on dispersed assets and asset management – intelligence at the Edge can be the true difference maker for your organization. For more information about the ZumDash Small SCADA application, please visit: https://www.freewave.com/zumiq-remote-access-control/ To learn more about the full ZumIQ solution, read case studies or download solutions briefs, please visit: https://www.freewave.com/zumiq/

FreeWave Blog Series: The Intelligent Edge

A Blog Series Dedicated to IIoT, Application Development, and Intelligence at the Edge The Internet of Things (IoT) has changed the consumer world in ways no one ever imagined.  By placing intelligence in the IoT network, the “Thing” can do whatever we want it to do.  Now Industrial companies are seeking to take advantage of this edge-deployed intelligence in order to maximize profits, improve safety and streamline operations. In addition to the challenges IoT technology had to overcome such as cybersecurity, scalability and interoperability, Industrial IoT (IIoT) must also focus on reliability, ruggedness and more. FreeWave is uniquely positioned to understand and address all of these challenges. We have delivered world class IIoT platforms for almost 25 years to thousands of industrial and unmanned systems customers. With that experience, we’re now leading the charge to deploy intelligent applications at the edge of industrial networks and unmanned systems. In the first edition of “The Intelligent Edge,” we’re sitting down with Jesse Steiner, FreeWave systems engineer, to discuss how he is helping industrial customers understand the power of deploying intelligent applications in an industrial network. FreeWave: We’re starting this blog series to interview people who are contributing new applications and ideas for IIoT environments. You have an interesting story to tell around that — can you share that with us? Steiner: Sure — so I started getting involved with IoT apps once we released ZumIQ, the App Server Software platform that is deployed on our ZumLink 900 Series radios. I don’t have a whole lot of programming experience — I’ve used a handful of different languages at a pretty novice level over the years. The first thing I used it for was to write a simple app to monitor the level in the water tank out at a remote ranch location that wasn’t often manned. It was the second property for the ranch owner. He had this big water tank, 22,000 gallons, that he needed to keep an eye on the level because it provided irrigation water, drinking water, bathing water, all that. He’d had issues in the past where the circuit breaker on the pump tripped, or had a leak, and he went out to his second property to find he had no water to use. So we took a ZumLink 900 Series radio with ZumIQ, wrote an application for it that would pull a sensor for the level in the tank, it would format that data, and then send it over the radio network to the internet and to the cloud, and then to the ranch owner so he could look at his water tank anywhere. It was really done as proof of concept, and as a learning exercise for me, but it’s been deployed for a month, month and half maybe, and it’s already proven very useful on multiple occasions FreeWave: So how did you write the app? Steiner: I don’t want to call it a programming language, but I used a programming environment called Node-RED. It’s basically a graphical interface to Node.js. It’s a graphical thing where you lay these function blocks down and connect lines but you’ve also got the ability to write your own Javascript code that gets inserted and run in that environment.  From there, it got sent to a cloud hosting service called dweet.io, which is really good for very beginner use — it doesn’t require any advanced IT knowledge or programming knowledge and you can get data in there and store it really quickly. And for actually viewing it, I used a service that’s owned by the same company as dweet called freeboard.io. You basically build a dashboard and point it towards the data you have stored in dweet, and it will pull that out and display it in a graphical way. FreeWave: What other applications could the tank level monitoring be used for? Steiner: That application caught the eye of the company who installed the pump and tank system out at that property in the first place, and they’ve since reached out us and said, “Hey, we’re interested in this. We’d like to see if we could develop it further.” As FreeWave, we’re not selling the software or any of the service. But we did provided the radios and pretty much the same code that we had used before to this company, so they can develop something that would be more than proof of concept — really, a marketable software product where you could choose the number of tanks, monitor multiple tanks of different sizes, keep an eye on pump status, potentially control the status of pumps and valves — really for a whole monitoring and control system when it comes to remote irrigation.  What that comes down to is intelligence, monitoring and control in remote locations, where is kind of where FreeWave has been used for 20 years out in the oilfields. FreeWave: Any sort of learnings you took away from going through the process of writing the application? Steiner: For a non-developer, the Node-RED environment is a very useful, powerful tool. It’s great for getting simple projects up and running very quickly without vast programming knowledge. The projects I’ve worked on since then have become a bit more complicated, so more and more I wasn’t just using pre-made blocks in these applications, it was just more code in the traditional since. So Node-RED is a great platform for getting going — and I still use it, I just rely less and less on its built-in features and I’m kind of adding my own. Once we got in a situation where we needed to make things truly available anywhere, basically once I grew out of the freeboard.io dashboard, I started making things from scratch in Javascript and HTML, but it was really a good springboard to get me introduced.  In terms of tips for somebody that would be just starting, really the biggest tip is don’t be intimidated. Don’t think you need to be an expert coder to put together

International IIoT Perspectives: Fog Computing On a Global Scale

Fog Computing is a slippery concept. It combines two critical components of data computing today, Edge and Cloud computing, into a system that leverages the strength – and necessity – of both. This idea of local computing (the Edge) combined with more complicated analytics engines (the Cloud) opens up a world of possibilities for data communications. Fog Computing & Emergency Response Earlier this fall, researchers at Georgia Tech looked at the application of Fog Computing in areas struck by natural disasters. In these areas, traditional means of internet connection are often knocked out of commission, leaving rescuers and victims unable to communicate with one another, even though there are many apps designed to help facilitate rescue. Where Fog Computing comes in is that rather than relying on a direct connection to the internet, different Fog nodes can be leveraged to create an ad hoc network that can still send basic messages: However, one important advantage of a fog system is that messages can be distributed between a broad network of computers through temporary ad hoc connections, even without live internet connections. The geo-distributed network of fog nodes, which could be phones, tablets or any device part of the Internet of Things, could generate communication channels in areas where there were none before, allowing the creation of population density maps in flooded areas. Another application would allow users to check the fog network to see if their family members are safe after a crisis event. Fog Computing applied in this setting is applicable around the world, as we are reminded daily of both the ubiquity and fragility of wireless communications against the whims of nature. Smart Grids Need Fog Computing Across the globe, more and more countries are jumping into smart grid deployments. The good side is that smart energy tools are critical to managing resources. The bad side is that most are not sufficiently developed with the necessary security infrastructure in place. When considering the rapid development of smart grid tech, Fog Computing quickly comes up as a viable tool for ensuring reliable data communication and information transfer between consumers, grid operators and larger energy providers. The Open Fog Consortium, a global Fog Computing group comprised of technology and academic thought leaders, has formed Resilient Information Architecture Platform for Smart Grid (RIAPS), a project aimed at developing software for Fog Computing platforms: RIAPS is very different from conventional platforms as it was designed for inherently distributed and decentralized applications. An application is composed of interconnected real-time software components (similar to micro-services) that can be event- and/or time-triggered and that interact via well-defined communication patterns, including publish/subscribe and synchronous and asynchronous service invocations. Such components are location transparent and agnostic about the underlying messaging framework. Although the project is based out of Vanderbilt University, in the United States, the repercussions will be felt throughout the world. Is Fog Computing the Final Answer? While Fog Computing has yet to be standardized and applied across the wide range of IoT technologies out in the field today, its ability to combine both local and Cloud data analytics is something that can have an impact in both the consumer and the Industrial IoT. However, the first adapters, companies that play in IIoT settings, will be largely responsible for driving the growth of this concept moving forward into the future.

Transforming SCADA As We Know It Through App Dev

Small- and mid-sized industrial organizations that are reliant upon Supervisory Control and Data Acquisition (SCADA) systems — like those in oil and gas, energy, utilities, and agriculture — are facing new pressures to meet market demands. In these environments, agility and operational efficiency are no longer “nice to have” but are now essential to survival. Operations managers at these smaller businesses constantly face demands to incorporate modern technology that requires increased connectivity across networks in order to automate, monitor and control the processes that optimize operational success (and limit risk/downtime). The challenge for many of these small- and mid-sized businesses is that they need to find solutions rugged enough to operate in harsh and remote field locations, while reliably monitoring data, executing logic locally and enabling visibility globally – all with limited resources. In many instances, a traditional SCADA system is hard on the pocket books and ROI is something that might only be achieved in the distant future. The good news is that technology providers have been listening and working to craft solutions for these businesses to ease the cost burden on the front end and expedite the ROI process. App Server Software Available Today Freshly available (as of today), App Server Software technology combines proven, industrially hardened 900 MHz wireless telemetry with the ability to program and host third-party applications, similar to a Linux-based Raspberry Pi embedded in an industrial Ethernet radio. Within the app server software solution, Industrial IoT (IIoT) developers have the ability to program with any language that is compatible with a Linux kernel, including: Python, Java, C++, Node-RED and Node.js development environments. The App Server software that FreeWave now offers comes pre-loaded with Node-RED, Python and MQTT for easy industrial IoT app development on multiple ZumLink 900 Series radio models. App-Based SCADA Systems With the app server software came the opportunity to transform SCADA. In order to support the small- and mid-sized businesses that face the costs of Programmable Logic Controller (PLC) type hardware and monthly recurring fees, the engineers at FreeWave have successfully built a prototype ZumDash Small SCADA app in Node-RED that is enabled by a ZumLink programmable radio. The prototype app is available at a fraction of the cost of traditional SCADA. The Small SCADA app enables reliable data collection; monitoring, and remote command and control functionality through triggers, alarms and actions. It supports analog, digital and HART data through a Modbus interface. It also provides a “dashboard” with user-defined status updates and data trend visualization from any web-based device. Essentially, the new app serves as a small SCADA replacement.   A Sample ZumDash Dashboard App Development Opportunities The Small SCADA app is only the beginning. Developers have a big opportunity to help transform operations across many industries through app dev at the edge. FreeWave wants to enable these developers through its pilot program. Participants will receive a complimentary hardware/software dev kit to write their own industrial IoT applications with easy-to-use developer tools. Learn more about the app-based SCADA system here: FreeWave Unveils ZumIQ App Server Software to Power IoT Programmability at the Edge

IIoT News Roundup: How IoT is Saving Lives

In the past several weeks, there have been two massive natural disasters in the U.S., as Hurricane Harvey made landfall in Texas, bringing historic flooding to Houston and surrounding areas, and Hurricane Irma devastated parts of the Caribbean and Florida. Sadly, thousands of people find themselves without power, food and shelter. It is indeed a terrible tragedy and our hearts go out to those affected. In this devastation, however, there is a story emerging about the role the Internet of Things (IoT) has played in disaster preparedness. Indeed this technology has matured to the point that it is making a real and measurable impact in helping communities prepare for, respond to, and recover from disaster. In today’s IIoT news roundup, we will take a look at several stories emerging around disaster preparedness, smart cities and the IoT. Disaster Response in the 21st Century: Big Data and IoT Saves Lives In this story from Forbes, author Chris Wilder describes some of the ways the IoT and other technologies have changed the way disasters are predicted and responded to. Specifically, Wilder cites the ways crowd sourced emergency applications have made post-disaster communication and emergency dispatch easier and more streamlined. Further, Wilder speaks to the ways Big Data generated from sensors and meters throughout the region helped give more advanced notice to impacted areas and helped predict the path of these hurricanes with greater accuracy. IoT’s Role in Natural Disasters like Harvey                   In this article from IoT for All, author Hannah White discusses how the advent of the IoT has fundamentally changed the way hurricanes are predicted and responded to. Specifically, White discusses how open data was used to list Red Cross shelters with space availability, as well as evacuation routes that remained passable. White also describes the way organizations are leveraging drone technology in their response. Oil and gas companies are using drones to inspect their facilities, while insurance companies have been able to use the tech to capture high-resolution 3D images of damage to help expedite claim response and enable those affected to rebuild and recover more quickly. Finally, White discusses the way different organizations are leveraging IoT sensor arrays to measure and predict natural disasters in advance, helping to provide critical time to those in harm’s way. Where Will Hurricane Jose Go Next? How Drones and Lightbulbs Help Predict Dangerous Weather Unfortunately, Irma and Harvey are being quickly followed by another potentially dangerous storm (at the time of writing, Tropical Storm Jose) looming east of the United States. In this article from Newsweek author Kevin Maney describes the ways technology is helping us predict storms with greater accuracy. In the article, Maney notes the one of the key components for more accurate weather modeling and prediction is vast amounts of data. Indeed, the IoT is the most prolific and advanced data engine in technology history, and scientists are able to leverage the IoT to make incredible breakthroughs in their weather modeling algorithms. Department of Energy Investing in Power Resiliency In this recent blog post from the Department of Energy, it was announced that the DOE is invested some $50 million to help improve the resilience and security of the United State’s energy grid. This is a particularly timely announcement in the wake of Harvey and Irma, whose impacts on area electrical grids were profound. One of the technologies in discussion as part of the investment are micro grids, smaller, more “agile” energy structures that make the impact of localized storms less widespread. In a traditional grid system, one transformer can impact wide swaths of residents, while a micro grid limits damage and makes repairs simpler, less costly, and faster. Final Thoughts While the devastation caused by these two natural disasters cannot be overstated, IIoT played a significant role in saving lives both before the storms made landfall and after the storms had passed. When it comes to these sorts of disasters, even minutes of additional notice can mean the difference between life and death. As IoT solutions grow more robust and continue to become more ubiquitous in cities across the globe, we expect prediction and response capabilities to continue to advance at an incredible pace.

The Next Generation of IIoT: Micro & Macro Connectivity

From a consumer standpoint, the impact of IoT connectivity is clear. People can purchase smart home systems and automobiles with increasingly autonomous features. Looking at the potential changes to our daily lives in the coming years, all things point to connectivity. We are eyeing a future where we can monitor and control our homes, vehicles and business around the clock. The news stories are exciting and tangible because new products are frequently unveiled and we see them being used in our everyday lives. This impact has spread beyond the scope of the consumer market, which ultimately led to the Industrial Internet of Things (IIoT). Traditional businesses, like those in utilities, oil/gas and agriculture, face a future that has the potential to transform entire industries due to the power of digital disruption. Despite the growing pains and challenges of “going digital,” industrial businesses face almost limitless potential to streamline operations and control large distributed networks with a level of precision that was previously impossible. As these industries pick up on the value of data and connectivity, next generation applications have emerged that will drive competition and increase productivity. Data and analytics will be available via the cloud and accessible from any device. And even better, the quality of data will be controlled through automation and the incorporation of third party applications. What this means for businesses is they will be able to monitor their networks on a micro level. This allows problems to be stopped in their tracks and for precise process adjustments that streamline operations. With third party applications, there is not only substantial business opportunity for developers, but there are endless possibilities for process control, security and operational apps that will drive down costs and support increased production. Most business decision makers are aware that there is no stopping digital transformation because research shows that it’s already happening. Many businesses are in the process of digital transformation and have already thought about these next generation systems and the research proves this: 75 percent of IoT providers say that big data and analytics are among the top skills they look for when adding talent to their teams. 50 percent of companies look to hire specialists in mobile development. A recent TechBullion article states: “they already have noticed the close relationship of mobile and IoT and plan to launch IoT projects for their businesses within the nearest 5 years.” Gartner says that by the end of 2017 demand mobile application development will grow five times faster than the number of IT companies able to meet this demand. A new report from Frost & Sullivan anticipates a trend in the transition from connected devices to the use of cognitive or predictive computing and sentient tools in the next 12-18 months. So what does this mean for industrial business? It means they need to invest now in the communication technologies that will deliver the data that is absolutely critical for future networking needs. It means they need to think about how they can enable programmability at all network endpoints – even at the edge. And lastly, it means they need to start working through the challenges of a digital shift now so they are prepared for an automated, connected future.

International IIoT Perspectives: Precision Agriculture

In the United States, precision agriculture is one of the largest industries by both operational scale and economic impact. The technology utilized is typically on the cutting edge, especially for automation and control. Things like sensors, programmable radios and generally more complex software applications have allowed that industry to evolve, domestically, to a point where land and other resources are used optimally. Internationally, although there have been ‘smart’ or ‘precision’ practices in certain sectors of agriculture, many countries are just now starting to adopt the technology to its fullest extent, including the ability to innovate via start-ups and new practices. India & the Digital Agriculture Revolution According to an article in India Times (image credit), the country is aiming to secure a 20 percent stake in the IoT market share in the next five years through its ‘Digital India’ initiative. While many might look at India and think of the sprawling and diverse urban environments that could offer some potential complications for IoT, it is rural areas seeing the most interesting developments. There has been a noticeable growth in tele-medicine operations, which can allow patients in remote areas to interact with doctors for consultation, eliminating the need to get to a city, or vice versa. Perhaps an even greater area of growth lies in the agricultural realm. According to the article, agriculture employs 50 percent of the country’s population, so the potential for a digital revolution is high. Farmers are just starting to implement sensor technology, automation hardware, and even leading-edge tools like voluntary milking systems the allow cows to be milked on an automated machine according to biological needs. Israel’s Precision Ag Start-Up Community In Israel, where IoT technology is starting to mature, the name of the game is data collection and analytics. Mobile applications, sensor data collection hardware, and advanced analytics software are three areas that Israel is seeing significant market growth, according to Israel21c: Israel stands out in precision-ag subsectors of water management, data science, drones and sensors, says Stephane Itzigsohn, investment associate at OurCrowd. … “Multiple startups are aiming toward the same goal — providing good agricultural data — but approaching it from slightly different angles,” Itzigsohn tells ISRAEL21c. “One might use satellite images or aerial photography; another might use autonomous tractors. Not all will get to that peak in the long journey of farming becoming more efficient.” For example, CropX, an investor-backed advanced adaptive irrigation software solution, can be placed throughout a farming area and synced with a smart phone, allowing the operators to receive real-time data updates on things like soil and weather conditions. CropX is based in both Tel Aviv and San Francisco, indicating that the technology may be poised for wide international adoption in the future. Analytics Drive Italy’s Drought Recovery Italy is perhaps best known for a single agricultural export: wine. However, many would be surprised to find out that it is one of the top corn producers in the European Union, producing more than 7 million tons of corn in 2015, according to an RCR Wireless report. In 2016, the EU’s total corn output dropped noticeably due to year-long droughts affecting production. In Italy, start-up companies collaborated with industrial ag operations develop and deploy widespread soil sensor and water automation technology to help streamline farming practices and create a more efficient system for resource use. The technology allowed farmers to get a comprehensive look at their operations and identify high and low yield areas in order to better utilize the available space. Precision Agriculture and the Industrial IoT The continued maturation of IIoT technology is enabling countries around the globe to better utilize resources like water, energy, and land area to create better agricultural operations. As populations continue to expand, and food production becomes even more important, being able to connect these technologies across the globe could become a key factor in optimizing crop output in critical areas. Imagine the above farm in Italy being able to send its data to data scientists in Germany or the Eastern Europe who could in turn analyze it and provide actionable feedback. Or an industrial farm in Israel managing its yields sending that information in real-time around the country. These possibilities are not far off, and as the networks, hardware and software continue to be adapted, the future of precision ag internationally, will become the present.

Remote Tank Level Monitoring and Automation

Industrial livestock operations have several critical needs in order to function smoothly, but perhaps most important is also the most fundamental: water. On remote sites, tank level monitoring and automation are tools that can essentially make or break the entire operation. In many of these situations, the needs of the site managers are different, so in order to maximize the technology being deployed to drive the automation process, they need to be able to customize the functionality. For operations using radio communication networks, those radios need to provide maximum programmability in order to host third party applications specific to the needs of the site managers. We recently finished a deployment that serves as an excellent case study for remote site tank monitoring deployments and included some interesting uses of radio programmability: The operator of a Rocky Mountain based livestock facility approached FreeWave to assist in remote data visualization of water tanks that are vital to its operations. The pain point was that the tank levels could only be observed visually on premise. After consideration of the terrain (mountainous, remote and big temperature swings), sensors and communications infrastructure, FreeWave engineers recommended ZumLink IPR with the Node-RED programming language for intelligent tank data visualization via browser or mobile device. The facility has minimal to zero staff most of the time. If a fault occurs such as a leak that prevents a tank from filling, the facility operators are unaware until they visually inspect the remote faulty tank, located a half mile from property headquarters. The operators wanted to reduce the number of trips to the tank facility and remotely monitor all tanks via web-based browser or mobile device. For the complete case study, visit this link: https://www.freewave.com/case-studies/remote-tank-monitoring-automation/.

Manufacturing Change through Big Data, Predictive Maintenance & Remote Access

Although the manufacturing industry has seen some troubling times over the past few decades, new technologies are helping it make a resurgence. So what has manufactured this change, you might ask? The rise of automation and robotics across many sectors, and perhaps one of the most significant industrial impacts since the assembly line was created – the Internet of Things. IoT has given rise to advancements in sensor technologies and M2M (machine-to-machine) communications, along with edge computing analytics and business intelligence from big data. These new methods are fundamentally changing the way goods are designed and produced. We recently wrote a blog highlighting some of these impacts and challenges that coming along with it. Below, however, we’ve gathered a handful of recent industry news articles for you to explore and learn how the industrial IoT is changing the manufacturing landscape as we know it. The Hunt for Zero Defective Parts Per Million When it comes to highly scrutinized and regulated industries, automotive manufacturing is near the top of the list. Understandably, then, automotive manufacturers are quite keen on the pursuit of zero Defective Parts Per Million (DPPM). This recent article from Manufacturing Business Technology discusses the driving forces behind this movement, namely the advent of autonomous vehicle technology. While on-vehicle computer systems of the past may have controlled entertainment or emissions systems, in the near future almost every vehicle system will rely on a piece of silicon in one way or another. With the stakes higher than ever, the advanced capabilities of the IIoT are coming into play to drive manufacturing processes. Moving Outside the Plant: Remote Access Is Quickly Evolving Just a handful of years ago, remote access technology was not a standard. However, as noted in this article from Automation World, a recent survey discovered that 72% of respondents are using remote access to monitor plant equipment and data. While the usage of remote access does vary by industry, the growth in this segment of the IIoT has been strong and shows no signs of slowing — and the applications for remote access are diverse. As Matt Wells, GM of Automation Software for GE Digital said, ““Anyone dealing with distributed fleets has a strong demand to be able to see, manage or control it from a remote spot,” he explains. “It all comes down to the difficulty of accessing that remote asset.” Big Data and Shale 2.0 As oil prices seem to have stabilized (for now) at a lower new norm, oil companies are having to get creative to keep margins healthy and profits rising. One of the ways companies are accomplishing this is through Big Data and the IIoT. This article from E&P Magazine highlights some of the challenges and hesitancies that are emerging within the industry, often fueled by cultural difficulties. However, Mark Slaughter — longtime Halliburton employee and current venture capital advisor — believes in just 10 years, smart analytics will give oil companies the ability to produce the most economic barrel of oil. Preventing Machine Failures through A.I. Automotive recalls are a massive expense for car manufacturers, not to mention the significant public relations disaster that can arise. In an effort to avoid this expensive and unseemly events, automotive companies are turning towards next-gen analytics and automation technologies to help prevent this issues before they become widespread problems. This article from IT Brief states that a recent McKinsey study shows that predictive maintenance could save global businesses an incredible $630 billion a year by 2025. In a world where recalls are pricey PR nightmares, this is music to automotive manufacturers ears. The IIoT’s Role in Product as a Service and Predictive Maintenance Models This recent article from Plant Services explores how the IIoT is changing the way equipment manufacturers and service providers approach their business, particularly through Product-as-a-Service (PaaS) and Predictive Maintenance (PdM). PaaS is the idea of charging for the output of a piece of equipment, rather than an upfront fee for the equipment itself. For example, the volume of compressed air generated by an air compressor. With PdM, advanced analytics are used to monitor the various systems in a piece of equipment, and diagnose and fix potential issues before they become larger (and more expensive ones). As the IIoT continues to grow, and more applications become mainstream, it will be interesting to see how manufacturing processes adapt and change. What new manufacturing promise do you think the IIoT holds? Where industry do you see IIoT gaining a foothold in next?

International IIoT Perspectives: Smart Cities

The Industrial Internet of Things (IIoT) is, at times, hard to pin down. The stronger the technology has gotten, the broader the applications have become, affecting everything from energy, to smart cities to manufacturing, and in the process, blurring the line between traditional consumer and industrial markets. Interestingly, in the United States, much of the Industrial IoT advancements have come from the private sector – oil and gas, utilities, precision agriculture, etc. International IIoT, however, has seen real advancements coming from cities – smart cities, that is. Smartest Cities in the World A 2015 article from Forbes provided a list of the top five smartest cities in the world based on a number of factors, including environmental monitoring, smart traffic management, data usage and creative tech applications.  Barcelona topped the list, with New York City, London, Nice (France), and Singapore rounding out the top five. In each instance, the use of smart technology improved quality of life, efficiency, and better overall functionality. Of course, there are myriad factors to consider when evaluating a city’s “smartness,” but considering how many moving parts – literally and figuratively – that it takes to create a smart infrastructure, the breadth of application is impressive. Barcelona’s comprehensive wired network drives an infrastructure that is constantly aggregating, transmitting and analyzing data for all kinds of things: The boxes are no regular electricity meters. They are fine-tuned computer systems, capable of measuring noise, traffic, pollution, crowds, even the number of selfies posted from the street. They are the future of Barcelona, and in some sense they are the future for all of us too. The hard drives are just one piece of what is “unusual” on this street, in fact. Cast your eyes down, and you might spot the digital chips plugged into garbage containers, or the soda-can-size sensors rammed into the asphalt under the parking spaces. The paragraph above not only highlights the often hidden aspects of smart cities – sensors, hard drives, boxes – but also the sheer magnitude of the data being collected from wherever possible. The technology that powers that data collection lies in the actual communication networks, which are powered by an array of RF, cellular and WiFi connections. Today, many of the devices that are responsible for collecting the data from the source – the access layer – are capable of hosting third-party, proprietary applications that can filter and transmit data in specific packages, turning Big Data into Smart Data. Lately, London has focused on green energy and environmental progress. The city launched an initiative to become a zero-emission city by 2050 with a combination of electric vehicles and public transportation. Sounds familiar, right? The actual mechanisms driving that initiative are not necessarily ground breaking: reduce combustion engines on the road, encourage people to use public transport. However, the technology has finally started to catch up. With smart traffic monitoring capabilities, public transportation can run more efficiently, keeping to strict schedules. Additionally, driverless vehicles can perhaps help lead a transportation infrastructure devoid of human-caused accidents, opening the road systems and, again, leading to greater efficiency. Smart Cities, Smart World Of course, the two examples above come at a high level. There are significant technologies driving the actual implementation of smart city devices, but the key factor is that the leaders of the respective cities understand the need for a stronger, smarter infrastructure. Many other cities are catching up – India often pops up with smart city initiatives, which is a fascinating case study based on the economic disparity of the country. Still, the drivers of the international IIoT goals often point to the development of smart cities as an ideal outcome based on the continued growth of connected technology.

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.