Technology Simplified: Leveraging Data in the New Digital Era

Excited by tomorrow, we face a new world filled with endless possibilities each day. Thanks to modern technology, simple sensors open the doors to our favorite restaurant, edge computing allows manufacturers to spot and correct production glitches before they happen, and high-tech traffic cameras analyze and record thousands of license plates daily to spot stolen and unregistered vehicles while also identifying suspected criminals. It’s no secret that the world is evolving before our eyes, and through the technological advancements of this digital era, we are creating a more efficient world. The power of data Data is a powerful tool of knowledge, and lucky for us, it’s everywhere! Every one of our actions is driven by a manual process of data – like the simple act of putting on a jacket when it gets cold, or an automated process of data – like a valve instinctively shutting off when a water tank gets full. Today we have the technology to effectively process, analyze and distribute data metrics in tremendously impactful ways. What does greater simplification look like for industrial leaders? Remote operations simplified When leveraged effectively, industrial internet of things (IIoT) solutions take remote operations to the next level, simplifying the work process for teams and industries across the globe. Think about some of the most popular high-value remote assets today, like drones, video surveillance, or even center pivot irrigation systems – these entities perform so well because they do what humans can’t. In mere seconds, IIoT technology can process, distribute and respond to data that would otherwise take an entire team hours, days or even weeks to achieve. In the not so distant past, industrial operations relied solely on data consumption (i.e., how much water is in the tank; what temperature is the water), but today, advancements give us the ability to respond nearly instantaneously to that collected data with actionable execution. Today we can view and control the management of an entire operation remotely on our cell phone. We can see how much water is in a tank or what temperature that water is at and automatically change and adjust the water levels and temperatures from near or far. As a result, the amount of time, resources and energy needed to run businesses has transformed entirely, and this evolution allows us to create an enhanced world and standard of work. Simple deployment Remote operations are oftentimes in rugged terrain, making them difficult or even impossible to access. At FreeWave, we solve this complex issue by providing pre-configured ready-to-deploy solutions, complete with everything needed to achieve the mission at hand. For example, through FreeWaves’s joint venture with ModuSense, we’re simplifying connectivity to cloud with a variety of pre-configured and ready to deploy monitoring and sensing solutions by supplying the entire solution with a 12-month data plan, dashboard, 12W rapid recharge solar panel, satellite connectivity and Bluetooth connectivity. You can use your mobile phone to validate the data directly from the gateway without having to wait for satellite transmission. We all know the “gotchas” when it comes to buying technology. Simple deployment means you’re ready from day one, without needing to buy additional components. Real-world impact As Chief Operating Officer and SVP of Global Sales and Marketing at FreeWave, I get a front-row seat to the real-life impact modern-day technology is having on lives, businesses and entire industries. The essentials of life have become simplified, and in the process, more people and businesses receive greater access to the things that matter most like critical information, metrics and potential outcomes. Creating a more sustainable world and preserving natural resources like food, air, energy and water have been at the forefront of IIoT since FreeWave began almost three decades ago when we brought long range, low power consumption, C1D2, 900 MHz connectivity and radio technology products to our customers. Since then, our connectivity options have greatly expanded by adding EDGE Compute, Software, Industry Protocol Conversions, Data Broker & Cloud, a complete end to end solution and with it comes the responsibility for greater environmental stewardship. We’ve all seen the devastating impact an environmental catastrophe, like the 2010 Deepwater Horizon oil spill, can have on the globe. Simple mistakes can and do cause enormous repercussions that affect us all. The truth is, with human interaction there will always be the cost of time and possible room for error. Technology, however, is different, as it allows us to not rely solely on human capacity and depend more on interconnected and advanced systems. Now, we don’t have to wait for someone to run into a situation or crisis and manually pull a lever or travel to turn off a valve. Instead, preprogrammed automation or a simple click of a button or flip of a switch from virtually anywhere in the world can control your high value remote assets. FreeWave is a technological pioneer in the 21st century. We have connected the unconnected with a reliable ecosystem of edge intelligent radios and solutions to optimize the extreme edge of remote industrial operations. Through our single IIoT platform, we provide expanded capabilities for data capture, analysis, control and automation. Our single pane of glass approach provides a simple, single vendor, one-stop-shop solution for remote operations worldwide. At the end of the day, when we take the power of data monitoring and funnel it through modern technology, we open ourselves up to a new world of endless possibilities and opportunities. It’s one thing to have data; it’s an entirely different thing to know how to leverage that data. At FreeWave, we are constantly pushing the boundaries of data monitoring and modern technology through our IIoT solutions and creating a better, safer and faster world of work for industries around the globe.
Data Connects Life: A Deeper Look at the Power of Connection for IoT Champions

Every day, the world shifts in a new digital direction, making our lives simpler and equally more complicated all at the same time. I can vividly remember the introduction of email. I had just started my career in tech, and I kid you not, my coworkers and I questioned the efficiency of this new digital communication system. Back then, taking the time to craft an email, when I could easily make a phone call or walk to the office next door, felt foreign and unproductive, but now, decades later, I can’t imagine my life or work without the power and ease of email communication. If there’s one thing we can count on, it’s change, and when we meet change with adaptability and curiosity, we can create and sustain a more connected world, one where technology invites us to innovate, collaborate and engage with each other and the environments we live in! More technology. More data. The Mckinsey Global Survey has found that our global response to the pandemic has accelerated the rate of technology by several years. What does that mean for real people? Over time, we have discovered a new world filled to the brim with data that both informs and transforms our day-to-day lives. From smartphones to traffic management systems, the Internet of Things (IoT ) is revolutionizing life as we know it, connecting us to more people, places and systems than ever before. Connection is a powerful tool, and when harnessed effectively, it can change the world. The interdependent relationship between our natural and digital world is quite profound; in today’s society, we operate as one. In smart agriculture, for example, effective data can make a significant difference in overall crop and herd health, which, in the end, affects us all. Whether we’re on the farm, on an oil rig in the middle of the ocean or in our own backyards, technology connects us. Data is everywhere, and when this data is measured and distributed carefully, it transforms entire industries. Accessing the data you need on your terms For the last 28 years, FreeWave Technologies has pioneered a unique IoT revolution, reinventing the way industrial IoT is used in the modern market. We connect the unconnected with a reliable ecosystem of edge intelligent radios and solutions to optimize the extreme edge of remote industrial operations. Through our software, we provide IoT champions with real-time data insights to create better and more sustainable businesses. To achieve transformative operational optimization, industrial leaders need visibility into data and the ability to proactively manipulate that data and act on the insights gained from it. Our vision is to build an ecosystem of edge intelligent radios and solutions to transform the extreme edge of industrial operations into a connected part of their enterprise. Our integrated edge connectivity and computing solutions provide expanded capabilities for high-fidelity data capture, analysis, control and automation via a single industrial IoT platform that is readily scaled as each edge computing need evolves. We call it a single pane of glass. With a legacy of solving thousands of customer changes across multiple industries and deployment in 39 countries, the goal is to continue to future-proof operations so that remote work becomes more autonomous and, dare I say, simpler. It all brings us more connected with our collective purpose to create a better and more sustainable world. Data connects life. The more we see, the more we understand, and the more we understand, the more equipped we become to make better decisions. As the Director of Marketing at FreeWave, I am closely connected to the people and operations most impacted by our work. I know firsthand how powerful connection is for the IoT champions we serve, and every day I witness the power of data to transform the world. Putting it in perspective Take the water and wastewater industry, for example; in this industry, clear and controllable data insights are key to achieving effective operational management. At FreeWave, we provide these actionable data insights such as moisture levels and weather predictions through our sensor and weather monitoring technology, which ultimately allow water and wastewater industry leaders to be proactive in their business rather than reactive. A proactive and informed approach to operational management makes the difference in creating a more sustainable environment, and a more sustainable environment transforms our communities and the surrounding world. FreeWave’s productivity technology is removing barriers to data and helping industry leaders solve unique challenges like never before. Where some people may only see tech software – a little box with some wires, chips, and sensors – a much deeper reality occurs. We are all connected, and today, IoT champions get to leverage the power of this connection, along with technology and data, to create a better world, one industry at a time. I am so proud to work for a company that is connecting the world in unique and innovative ways. Every day, I see the impact of technology and what it means to be more connected through data, giving us critical insight. What we do with that data is where the magic happens. This is where we can use connectivity to push boundaries for greater innovation, make best use of our people, create safer work environments by understanding what’s happening in hard-to-reach terrain, and even take bold action to architect a more sustainable world.
IIoT For Electric Utilities: The Past, Present, and Future

Electric companies are poised to become future IIoT leaders. Here’s why. Primarily driven by Advanced Metering Infrastructure (AMI), the Industrial Internet of Things (IIoT) has fundamentally changed electric utilities. Technologies that let devices act as two-way communicators between consumers and utility providers paved the way for new opportunities. Digital transformation is here, and businesses have to reinvent themselves to stay competitive and relevant. Still, many electric utility providers aren’t ready to leap into Industrial 4.0. Why? Because adopting and integrating smart tech into legacy IT and OT infrastructures can seem daunting. Learning new skills is challenging and takes time, and potential setbacks, like unplanned downtime, can leave utility leaders fearful. Many utility leaders are riddled with doubts regarding the technological uncertainties of IIoT. It’s understandable. With rapid growth come growing pains. The IIoT journey from uncomplicated AMI to vast, smart grid expansions is challenging. Urbanization is quickly expanding, energy prices constantly fluctuate, legislation is always changing, and sustainability is paramount. Because of this, utilities must refine their operations to meet evolving consumer demands for sustainable, affordable infrastructures. IIoT adoption won’t happen overnight, but you have to start somewhere. Here’s how: Introduce real-time monitoring equipment like sensors, readers, and alarms into your operations. And use technology to automate processes, conserve resources, improve outcomes, and eliminate downtime. Still, understanding how IIoT can impact your business is a great place to start. How can IIoT solve your problems? The benefits of IIoT are hard to ignore. Almost no one would balk at real-time data collection or say “no” to monitoring critical system health. Who would pass on the opportunity to improve efficiency and safety? Almost no one. Let’s face it. Competition is stiff, and unhappy customers create churn. Cost and efficiency drive consumers these days. They’ll switch providers with a simple click. Customer churn is inevitable if you can’t provide reliable service. That’s why your technologies must allow you to react in real-time. Seconds count when it comes to your customers. Connecting your devices, sensors, and alarms to the Internet, lets you monitor and utilize data in real-time to: Increase efficiency Use automation Reduce errors Work remotely Enhance security Boost profits Make better decisions These are benefits you can’t afford to miss. Implementing IIoT is a surefire way to open personalized customer communication. IIoT lets you tailor services to specific customer demands. We can’t understate the value of using edge technology and wireless connectivity to remotely operate, analyze, and optimize your electric utility operations. As energycentral.com points out, “utilities who refuse to adapt or change will suffer financial losses, countless preventable maintenance issues, and a waste of resources.” How can utilities lead the next wave of IIoT? IIoT is how power and utility providers will operate in the future (many already are). Traditional energy production and distribution methods are obsolete, and the days of manual processes and zero real-time visibility are over. IIoT is transforming how utilities run vast, widespread, and remote operations, and internet-connected devices and machines are reshaping the ways utilities operate. Technology never stops evolving, and transitioning into Industrial 4.0 and IIoT isn’t an option anymore. The pandemic increased automation and digitization demands, producing a ripple effect that’ll extend into the future of IIoT. Utility companies are partnering with tech companies to create innovative solutions to improve sustainability and become more efficient. As IIoT adoption accelerates, the opportunities to provide amazing service increase exponentially. With IIoT, utilities are proactive instead of reactive. And predictive maintenance through AI lets utilities continually learn and optimize operations. It’s a new era in the power industry. And smaller utilities are outpacing massive corporations. Smaller, more agile businesses are transforming the industry with their smart business models. And these same small businesses pose a threat to established corporations digitally transforming too slow. Providers that embrace IIoT will emerge as utility leaders in the next several years. Put your business and your customers first. You can’t afford to not implement IIoT into your electric utility operations. It’s time to put your business and your customers first FreeWave is second to none when it comes to proven IIoT solutions and making the most of your data. We’re the leaders in edge computing and wireless connectivity. We’ll accelerate your digital transformation. Our technologies are fast, flexible, and easy to deploy. We’ll have you leveraging IIoT, big data analytics, and connectivity to take the guesswork out of your operations in no time. And you can do it all without a complete infrastructure overhaul. You’ve been improving your utility operations for years; why stop now? We want to take your operations to the next level. Get in touch; let’s chat.
Connect Field Assets Together with Node-RED App Dev
Until recently, modern solutions for remote process-control and automation applications were limited to expensive retrofits, recurring subscription fees, and costly internal software development. Small- to medium-sized businesses often struggle with the balance of enabling these critical monitoring and control functions, while also focusing on the bottom line. Fortunately, the rise of open source software development has introduced new solutions that finally offer a more affordable option, with rapid ROI and measurably reduced OPEX and CAPEX. These solutions combine process-driven industrial app and edge intelligent platforms that can be implemented easily and affordably. These platforms achieve enterprise-level process control, monitoring and automation by combining 900 MHz wireless telemetry with the ability to program and host third party apps for intelligent control and automation of remote sensors and devices. Picture a Linux-based Raspberry Pi embedded in a robust industrial Ethernet radio. The beauty of these solutions is that they are designed for both experts and novices in the app dev space. Developers can program with any language that is compatible with a Linux kernel. Node-RED, in particular, has proven to be especially successful with the novice developer crowd, enabling fully functioning and visible small SCADA solutions that solve a variety of issues for small- to medium-businesses, namely the cost reduction of installation, maintenance and upkeep of more expensive hardware solutions. With Node-RED, Industrial IoT (IIoT) apps are easily designed and hosted on the radio at the edge of the network – offering local intelligence, analytics and process control to cloud-based systems. These apps have even raised the possibility of eventually serving as SCADA replacement. The programming possibilities are endless and the needs are vast, opening a significant opportunity for IoT developers to create apps that can be executed at the edge. This impacts many industries, but especially those with remote or geographically dispersed networks, such as those in oil and gas, precision agriculture, utilities, water/wastewater, and government/defense. In water/wastewater, for example, we’re already seeing the implementation of a Node-RED, complex water utility app. Node-RED Complex Water Application When a water utility has dispersed assets, such as tanks that are a large distance apart, there is a Node-RED SCADA app available that allows orchestration of both manual and automatic control of the system directly from the app dashboard without using expensive logic hardware. The Node-RED SCADA app also enables real-time alerts to potentially dangerous or damaging events via text or email – directly to their mobile devices. This is easily executed under Nod-RED programming and here’s a demonstration of how it works: With the edge intelligence and process automation delivered in a programmable platform we’re already seeing increased uptime and lower on-site maintenance costs because of the enhanced ability to monitor and troubleshoot remotely. Because data is acted upon at the sensor, these edge intelligent and process automation platforms solve problems, remotely, that are not easily solved with traditional hardware solutions. As we look towards the next generation of SCADA, it’s looking a lot more affordable and flexible. What types of apps would you like to see for water/wastewater?
IIoT News Roundup: How IoT is Saving Lives

In the past several weeks, there have been two massive natural disasters in the U.S., as Hurricane Harvey made landfall in Texas, bringing historic flooding to Houston and surrounding areas, and Hurricane Irma devastated parts of the Caribbean and Florida. Sadly, thousands of people find themselves without power, food and shelter. It is indeed a terrible tragedy and our hearts go out to those affected. In this devastation, however, there is a story emerging about the role the Internet of Things (IoT) has played in disaster preparedness. Indeed this technology has matured to the point that it is making a real and measurable impact in helping communities prepare for, respond to, and recover from disaster. In today’s IIoT news roundup, we will take a look at several stories emerging around disaster preparedness, smart cities and the IoT. Disaster Response in the 21st Century: Big Data and IoT Saves Lives In this story from Forbes, author Chris Wilder describes some of the ways the IoT and other technologies have changed the way disasters are predicted and responded to. Specifically, Wilder cites the ways crowd sourced emergency applications have made post-disaster communication and emergency dispatch easier and more streamlined. Further, Wilder speaks to the ways Big Data generated from sensors and meters throughout the region helped give more advanced notice to impacted areas and helped predict the path of these hurricanes with greater accuracy. IoT’s Role in Natural Disasters like Harvey In this article from IoT for All, author Hannah White discusses how the advent of the IoT has fundamentally changed the way hurricanes are predicted and responded to. Specifically, White discusses how open data was used to list Red Cross shelters with space availability, as well as evacuation routes that remained passable. White also describes the way organizations are leveraging drone technology in their response. Oil and gas companies are using drones to inspect their facilities, while insurance companies have been able to use the tech to capture high-resolution 3D images of damage to help expedite claim response and enable those affected to rebuild and recover more quickly. Finally, White discusses the way different organizations are leveraging IoT sensor arrays to measure and predict natural disasters in advance, helping to provide critical time to those in harm’s way. Where Will Hurricane Jose Go Next? How Drones and Lightbulbs Help Predict Dangerous Weather Unfortunately, Irma and Harvey are being quickly followed by another potentially dangerous storm (at the time of writing, Tropical Storm Jose) looming east of the United States. In this article from Newsweek author Kevin Maney describes the ways technology is helping us predict storms with greater accuracy. In the article, Maney notes the one of the key components for more accurate weather modeling and prediction is vast amounts of data. Indeed, the IoT is the most prolific and advanced data engine in technology history, and scientists are able to leverage the IoT to make incredible breakthroughs in their weather modeling algorithms. Department of Energy Investing in Power Resiliency In this recent blog post from the Department of Energy, it was announced that the DOE is invested some $50 million to help improve the resilience and security of the United State’s energy grid. This is a particularly timely announcement in the wake of Harvey and Irma, whose impacts on area electrical grids were profound. One of the technologies in discussion as part of the investment are micro grids, smaller, more “agile” energy structures that make the impact of localized storms less widespread. In a traditional grid system, one transformer can impact wide swaths of residents, while a micro grid limits damage and makes repairs simpler, less costly, and faster. Final Thoughts While the devastation caused by these two natural disasters cannot be overstated, IIoT played a significant role in saving lives both before the storms made landfall and after the storms had passed. When it comes to these sorts of disasters, even minutes of additional notice can mean the difference between life and death. As IoT solutions grow more robust and continue to become more ubiquitous in cities across the globe, we expect prediction and response capabilities to continue to advance at an incredible pace.
Microgrids Gaining Mainstream Traction
While “going off the grid” is not a new term, microgrids are finding new footholds in a changing utilities industry. Recently, more and more cities and states are turning to microgrids not only as highly effective ways of increasing energy resiliency, but also as pragmatic and cost effective strategies for shifting population densities and energy consumption behaviors. Below, we’ve gather some of the top recent headlines on the changing microgrid landscape. Microgrids In New Applications Microgrids have long been viewed as an excellent tactic for supplying power to rural areas and island communities. However, recent data shows that microgrids may be expanding. This article from the Motley Fool, notes that governments and correctional facilities are turning to micrograms as viable options for emergency backup power. Another area where microgrids are seeing growth is in use for growing suburbs and rural areas. In the past, power companies has to build costly new transmission lines to service growing population areas, lines which may only be used during peak demand for a few hours a year. By leveraging microgrids, energy companies can build cost effective solutions for dealing with rare power consumption spikes. Communities Turn to Microgrids for Energy A recent article from Electric Light & Power notes that there are developing plans to build 13 microgrids across the state of New Jersey to increase the areas energy resiliency and better prepare the state for emergency situations. The effort, spearheaded by New Jersey Board of Public Utilities President Richard S. Mroz, has been prioritized in the wake of the devastation caused by Hurricane Sandy, during which many areas were left without electricity and running water for weeks on end. One of the proposed microgrids in downtown Trenton would connect several important government buildings, helping keep the cities most essential resources up and running even during emergency situations. Building a Carbon Free City In the stretch of land between the city of Denver and its airport, a new town is being built that will rely solely on a microgrid for power — and it will be completely carbon free. The city, called Peña Station Next, will rely primarily on solar energy and is receiving large financial support from the city of Denver. As reported in this article from The Scientific American, the city will rely “mainly on solar energy, a king-sized lithium-ion battery and various energy efficiency schemes” for its power. Will Battery Tech Change Microgrid Strategies? Batteries are getting bigger — so what does that mean for microgrids? As noted in this article from Teslarati.com, Neoen and Tesla recently announced the creation of a 100MW/129MWh battery adjacent to the Hornsdale wind-farm in South Australia. One of the claims Tesla had in building the battery is that the company could make money by providing off-the-grid backup power. According to the article, however, this might not be so simple. Bruce Miller, a principal consultant for Advisian, says the 80-minute discharge time for Tesla’s system isn’t in line with 10-megawatt- and 20-megawatt-hour systems that could produce $2.1 million a year from supplying backup energy. Brooklyn is On-Board with Microgrids Brooklyn, the dense suburb of New York City, is one of a growing list of major population centers to explore microgrids. As noted in this article from Green Biz, Brooklyn is exploring a strategy where a virtual web of buildings whose owners can buy and sell power to each other using blockchain technology to manage the transactions. Currently, the program has hundreds of participants signed up, and users will ultimately be able to control their participation through the use of an app. With more governments and power companies exploring the promise of microgrids, it may only be a matter of time before a microgrid is a viable primary or emergency energy option for many. Where do you see microgrids growing next?
International IIoT Perspectives: Smart Cities
The Industrial Internet of Things (IIoT) is, at times, hard to pin down. The stronger the technology has gotten, the broader the applications have become, affecting everything from energy, to smart cities to manufacturing, and in the process, blurring the line between traditional consumer and industrial markets. Interestingly, in the United States, much of the Industrial IoT advancements have come from the private sector – oil and gas, utilities, precision agriculture, etc. International IIoT, however, has seen real advancements coming from cities – smart cities, that is. Smartest Cities in the World A 2015 article from Forbes provided a list of the top five smartest cities in the world based on a number of factors, including environmental monitoring, smart traffic management, data usage and creative tech applications. Barcelona topped the list, with New York City, London, Nice (France), and Singapore rounding out the top five. In each instance, the use of smart technology improved quality of life, efficiency, and better overall functionality. Of course, there are myriad factors to consider when evaluating a city’s “smartness,” but considering how many moving parts – literally and figuratively – that it takes to create a smart infrastructure, the breadth of application is impressive. Barcelona’s comprehensive wired network drives an infrastructure that is constantly aggregating, transmitting and analyzing data for all kinds of things: The boxes are no regular electricity meters. They are fine-tuned computer systems, capable of measuring noise, traffic, pollution, crowds, even the number of selfies posted from the street. They are the future of Barcelona, and in some sense they are the future for all of us too. The hard drives are just one piece of what is “unusual” on this street, in fact. Cast your eyes down, and you might spot the digital chips plugged into garbage containers, or the soda-can-size sensors rammed into the asphalt under the parking spaces. The paragraph above not only highlights the often hidden aspects of smart cities – sensors, hard drives, boxes – but also the sheer magnitude of the data being collected from wherever possible. The technology that powers that data collection lies in the actual communication networks, which are powered by an array of RF, cellular and WiFi connections. Today, many of the devices that are responsible for collecting the data from the source – the access layer – are capable of hosting third-party, proprietary applications that can filter and transmit data in specific packages, turning Big Data into Smart Data. Lately, London has focused on green energy and environmental progress. The city launched an initiative to become a zero-emission city by 2050 with a combination of electric vehicles and public transportation. Sounds familiar, right? The actual mechanisms driving that initiative are not necessarily ground breaking: reduce combustion engines on the road, encourage people to use public transport. However, the technology has finally started to catch up. With smart traffic monitoring capabilities, public transportation can run more efficiently, keeping to strict schedules. Additionally, driverless vehicles can perhaps help lead a transportation infrastructure devoid of human-caused accidents, opening the road systems and, again, leading to greater efficiency. Smart Cities, Smart World Of course, the two examples above come at a high level. There are significant technologies driving the actual implementation of smart city devices, but the key factor is that the leaders of the respective cities understand the need for a stronger, smarter infrastructure. Many other cities are catching up – India often pops up with smart city initiatives, which is a fascinating case study based on the economic disparity of the country. Still, the drivers of the international IIoT goals often point to the development of smart cities as an ideal outcome based on the continued growth of connected technology.
Utilities & IIoT: The ‘Perfect Storm’ Meets the Revolution
In early 2017, John Kennedy at SiliconRepublic declared the Industrial Internet of Things (IIoT) the ‘perfect storm’ – a convergence of technologies with the capacity to create new economic benefits based on operational efficiency. On these blog pages, we’ve covered many different facets of industries adopting intelligent communication technologies likes sensors, programmable radios, and powerful analytics tools, but one industry in particular seems poised for the greatest upheaval: utilities. Many industry experts are pointing at utility markets as poised for revolution. So, what happens when the ‘perfect storm’ meets the revolution? Critical Infrastructure Transformation Given the way the human population is dispersed in the United States (and abroad), cities play a huge role in driving the growth of IIoT technologies in utilities. Water and wastewater treatment plants are perhaps one of the most important (and overlooked) pieces to modern infrastructure. Without these plants, after 1-2 uses, most of the water in North America would be unusable. Instead, companies are using sensors and other connected monitoring devices to create smart data that informs decision making, eliminates variables, and improves effective responsiveness. Similarly, the electric grid has seen significant transformation as well. In the era of the smart grid, we now have the ability to monitor grid activity more closely, deploy electricity more efficiently based on usage spikes, and allow consumers to track their own energy usage. The residual effect of this tracking is, perhaps, an increased awareness of how we use energy on a daily basis and could lead to better individual conservation efforts. Alternative Energy On The Rise And speaking of conservation efforts, with the ability to use energy more efficiently, alternative energy has exploded as viable alternatives to our traditional resources. Wind power has grown into a consistent source of energy, but for years, operators needed a better way to monitor the energy systems. Today, IIoT technology not only allows better monitoring, but provides real-time management capabilities for operators. The name of the game is efficiency, and if the operations are efficient, then the usage can be efficient as well. Business Convergence Since utility companies are now better equipped to understand when and how resources are being used or deployed, they can streamline some of the day-to-day operations by building a network of smaller solutions that are specifically designed to meet niche needs, creating more business opportunities for both traditional and alternative utility providers. Although many doomsday scenarios point to increased automation as the death of the worker, with a greater diversity of solutions, the economic impact might actually provide more jobs instead of fewer. Relying on the traditional model of the last half-century, however, does not. Ultimately, we are still looking at an industry that is right on the cusp of revolution. Utilities have, historically, been slightly slower to respond to technology overhauls at a high level, but with the added efficiency and financial benefits that accompany IIoT adoption, companies are rethinking old strategies and pushing into a new frontier – confronting the ‘perfect storm’ head-on to ensure the best possible landscape once the dust settles.
Microgrids Promise Smart Industry Possibilities
The rise of microgrids, while not inevitable, is a natural next step in the progression of smart grid technology. As automation, data collection and transport, and monitoring capabilities have grown into standard smart grid technologies, companies, military bases, small towns and even cities are tapping into the possibilities for self-sustaining microgrids. What are Microgrids? Microgrids are, essentially, self-contained local energy grids. In most instances, they are attached to the greater grid (macrogrid), but can disconnect if necessary for autonomous operation. In other scenarios, they are local grids powered by alternative energy means. For instance, according to a 2014 article from Navigant Research, Alaska leads the world in microgrid deployment due to the small communities that rely almost exclusively on local energy – in some cases, 100 percent renewable energy. The viability of these kinds of energy distribution networks was not always apparent. For years, the United States has relied on a connected grid system that could be prone to huge shutdowns or security risks. As the technology has improved, microgrids that can disconnect from the macrogrid and function autonomously have opened huge possibilities for smart cities, the Industrial Internet of Things (IIoT), and more. Smart Cities Powered by Microgrids Smart cities rely strongly on the backbone of wireless technology. Imagine a scenario in which a city’s electricity grid went down, killing the wireless networks and effectively bringing any connected technology to a grinding halt. It could mean the shutdown of public transit, water and wastewater treatment facilities, electricity, vehicles, stoplights – the list can go on. Any IoT or IIoT systems would shut down. However, with a smart city set up with a microgrid concept, if a part of the macrogrid went down, microgrids could disconnect and allow normal functionality without service shutdowns. If hackers or other security concerns hit the macrogrid, microgrids can disconnect and protect the system from further threat. And, in many cases, microgrid technology is driving the rise of alternative energy and energy independence. Renewable Energy and Microgrids One of the main problems facing renewable energy has always been storage. How can renewable energy sources create excess energy and store that energy for future use in case of macrogrid failure? What cities and small towns are finding out is that by building a renewable energy system connected to a microgrid, they can effectively develop net-zero communities that don’t have to rely on energy storage in the instance of macrogrid failure. As these technologies have matured and become implemented in different use-case examples, the possibility for more intricate and complex systems is apparent. As the IIoT continues to adopt microgrid technologies and practices, industry practices will mature, creating greater efficiency both operationally and with regard to energy usage and distribution. The future of smart cities and a stronger connected infrastructure could be poised to accelerate along with the growth of microgrid applications.
Smart Grid: Overcoming the Challenges to Increase Efficiency
Recent research estimates that the Smart Grid will be a $120 Billion industry by 2020. As Industrial IoT (IIoT) drives digital transformation for utilities, there are a fair share of challenges and opportunities facing the Smart Grid industry today. To keep up with rapid growth and new technology that is shaping the utility markets in particular, Smart Grid decision makers must continue to improve efficiency. This allows the organization to leverage better data and make smart business decisions that align with an increasingly connected infrastructure. The Convergence Challenge In utilities markets, the IT/OT divide is rapidly shrinking, revealing significant challenges between the two groups. OT and IT each come to the convergence line with functional and operational differences, yet the changing technology landscape makes it impossible to avoid the inevitable meshing of the two formerly disparate organizations. As Smart Grid decision makers adjust to this shift, strong communication between teams will be essential – as well as careful selection of technology. For example, if utilities can work to integrate their legacy systems on the OT side with the more modern IT systems through a carefully selected communication solution, the Smart Grid will become more efficient, leading to better business decisions, as well as improved system operations and overall visibility. Going Digital IT/OT convergence, coupled with the new digital landscape has also driven Smart Grid organizations to reorganize under IT and address new technology challenges from a jobs perspective. Utilities are facing an ageing, traditional workforce on the OT side coming head-to-head with a new digital-centric workforce on the IT side. For Smart Grid organizations, it is essential to find the balance between hiring new technology savvy talent and nurturing existing staff. IoT will continue to drive automation, as Smart Grid decision makers either upgrade their legacy systems or figure out how to connect existing ones. We may see an increase in privately funded secondary education programs designed to create a more skilled workforce. If decision makers embrace the inevitable shift to digital, they will not only see the impact on efficiency, but they will stay competitive in an IoT driven market. Smart Sensor Boom IoT sparked a digital technology shift that resulted in the proliferation of Smart Sensors. Now utilities are able to monitor and transfer critical data from any asset – from the network Edge back to the central office. The demand for sensors hasn’t slowed – research is pointing towards continued and substantial growth in the Smart Sensor market between now and 2021. As sensors bring connectivity to more endpoints than ever before, utility decision makers are able to obtain detailed data for Advanced Metering Infrastructure (AMI) and Distribution Automation (DA) networks. With rugged wireless solutions, the sensor data is readily available in real-time for IT decision makers. The unrestricted access to data from all network endpoints forces decision makers to shift their focus from Big Data to Smart Data – the data that matters most to the business. It also drives the need for real-time analytics in order to streamline operations. This not only simplifies the convergence issue, but it drives Smart Grid efficiency. There are many factors contributing to the efficiency of the Smart Grid. While some initially present themselves as challenges, increasing connectivity and digital transformation give decision makers better data, connect more field assets and enable more opportunities to benefit the business.