Technology’s Impact on Air Quality Control Monitoring

At this very moment, wildfire season is currently underway in North America, and since the start of this year alone, more than 27,000 wildfires have consumed nearly two million acres according to the National Interagency Fire Center (www.nifc.gov). Though many people hear the word “wildfire” and immediately picture a forest in California, the reality is these natural disasters are prevalent across the country. Wildfires are everywhere  The Verge, a technology news website, announced recently that roughly 56% of homeowners in the United States face some sort of wildfire risk in the upcoming decades. Bottom line: wildfires are becoming more prevalent and costly every day, and these fires are affecting more than half the population and significantly changing our quality of life. Just a few decades ago, we didn’t have the technology to prevent or predict changes in the surrounding air quality, but now we do, and through it, we can create a better world. Today’s technological advancements allow us to be proactive rather than reactive when it comes to our overall health and safety. By leveraging sensor technology, we have a better chance of predicting and preventing significant changes in the environment, like a drastic shift in air quality before a wildfire begins. This insight allows us to make better decisions based on intentional insights, and our increased access to data provides us with the right information to better control our surrounding environments. Technology is powerful, and this power can and should be used to our advantage. One of my favorite ways to witness the power of technology transforming real-world issues is by exploring the ways sensor technology has a tremendous impact on air quality control monitoring. Today, internet of things (IoT) technology and satellite are the best tools for early detection and prevention of wildfires. Our approach to air quality control  Believe it or not, air quality has as much impact on the world as the daily temperature. With climate change causing drastic shifts in the environment, it’s important that we pay close attention to the quality of the air we breathe, as it affects our overall quality of life. As you know, trees play a critical role in our ecosystem, so we must be very intentional and proactive about protecting the forests around us. This is where sensor technology makes a big difference. With a small machine, we can now track and predict changes in the environment and our surrounding air quality, which ultimately helps us control, prevent and predict conditions that lead to wildfires. At FreeWave, we provide autonomous sensors that are strategically placed in remote locations to track and record relevant data metrics such as temperature, humidity, wind, direction and particulate matter. These readings help industry experts know what’s in the air and how the air is changing. Once this data is collected and transmitted to the cloud, we are then able to analyze it and provide alert and proactive responses where needed. We have created a single pane of glass approach, where anyone with access can log into a portal and see in real-time what is happening in the areas surrounding their deployed sensors. The interesting thing about our sensors is that they are fully powered by solar energy, and satellite signals transmit the recorded data. We are basically offering a “buy, install and forget” resource that makes life significantly easier for industry and environmental experts. There is a ton of value here. Not only are we taking an in-depth look at what’s going on in the environment through air quality control monitoring, but we are also taking that information and transforming it into action. The real gold here lies in the return on investment. A little money spent on these sensors upfront can ultimately save millions of dollars, lives and entire forest regions in the long run. Today, IoT technology allows us to prevent and control wildfires before they occur, and early fire detection leads to safer environments for us all. A unique human aid  We are making life simpler and safer for all by using technology to do what humans can’t. Back in the day, people had to sit in an operation tower for hours, looking out to catch any major changes in the environment. Today, there is a major shortage of people willing to do this kind of work, and can you blame them? As humans, we can only be in one place at a time doing one thing at a time, but with technology, this is not the case. With simple sensors, we can now monitor and control a lot more environments at a much more affordable rate. All this to say, the goal here is not to replace humans with technology as some might think; what we are really doing is enhancing human ability through the power of technology. I’ve worked in technology for over 30 years, and every day I witness its evolution. I know it’s hard to imagine a world without cell phones, but I can still clearly recall the days when cell phones took up the entire trunk of a car, and now look at the world, most of us carry the same ubiquitous smartphone in our pockets. Technology is amazing, and we have the opportunity to use it to our advantage. At FreeWave, we are taking the capabilities of mobility – LTE, 4G, Satellite, Wi-Fi, Bluetooth, 900 MHz– and marrying them with sensors. The data we gain from these sensors is saving us time, money and resources. At the end of the day, we’re taking away the need to “overthink” industry issues, like how to better prevent forest fires, and instead are replacing our questions with data-informed predictions and timely proactive responses. Every day, we strive to provide industry leaders with the tools and technology needed to spearhead faster and safer environments for us all. This is certainly not a boring business, and I thoroughly enjoy working for a company that is using technology to have an impact on the things that matter most.

Got Data? Now what?

It’s hard to imagine a world without the daily convenience of modern technology.   Just yesterday, I joked with my kids about the world before the internet – a time when we actually had to go to the library to look up unknown information. I can still remember the early days of my college career back in the late 90s, the internet had just come out, and we were all getting used to this new phenomenon called a “search engine.” Life has drastically changed over the last 25 years. Now, nearly all the information we want and need is at our fingertips.  Today, we have more access to data than most people know how to handle. Data is all around us, collected through the day-to-day actions and reactions of our lives. When we take the time to intentionally analyze, interpret and distribute the data metrics available to us, we can make smarter and more efficient decisions. There is so much to explore, and while our increased access to data is pretty interesting, the reality is that the combination of data and modern technology can change the world. Like many things, though, there are two sides. Sure, industrial companies can capture huge amounts of data, but it also raises the question: now what? How do you put all that data to work? Breaking barriers and pushing boundaries At the intersection of data and technology, we can push boundaries in work, business and society like never before. Data insights allow us to be more precise and accurate in our day-to-day work, which allows us to be more effective and efficient. The operational benefits here are endless, including improved quality control, reduced energy consumption, enhanced safety and increased operational consistency. Just take a look at the food industry, for example. Many field workers in smart agriculture rely heavily on data insights to control, predict and create the best environments for quality crops and harvest. The more accurate their predictions, the better their harvest, and the better their harvest, the faster we receive our food through the supply chain. Today, internet of things (IoT) technology can connect remote and mobile assets, like a tractor, for instant data access, making it easier for farmers to be more efficient and effective in their work. It’s really amazing when you think about it. Data is transforming how we operate in this world, creating better environments for us all. The FreeWave impact At FreeWave, we are constantly pushing the boundaries of technology to create faster, smarter and more efficient work environments. I’ve been a part of the FreeWave team since 2019, and I am constantly amazed at the ways our technology provides innovative solutions for real-world issues. Our products enable our customers to improve their work processes, and through our single pane of glass approach, we offer a simplified experience for businesses and industry leaders to receive automated technology that transforms data metrics into real-time execution. One of my favorite use cases to discuss is FreeWave customer that uses drone technology to deliver food and other valuable resources to far-reaching areas across the globe. With FreeWave products, they can run a smarter and more efficient operation. Their robotics delivery system is combating many of the complex access challenges the world faces on a daily basis. Our IoT technology is helping them solve complex issues with simplified tech solutions, and simple solutions create more time, energy and space to focus on what matters most: people. If you need a product to help you bridge the gap between technology and data, FreeWave is your solution. We are enablement partners, helping every one of our customers accomplish their complex goals. It’s inspiring to work with brands and businesses striving to create a difference in real-world issues. Our technology plays an intricate role in sustaining work environments and supporting entire industries around the globe. Data makes the difference At the end of the day, data is more than mere statistics; data is the key to our efficiency, productivity and safety. Data makes the difference in energy consumption reduction. Data makes the difference in the overall quality and safety of our daily environments. Data makes the difference in everything. Every day we have the opportunity to use data to our advantage, and at FreeWave, we are helping industrial innovators do just that. As technology continues to evolve, we will continue to provide top of the line IoT solutions that transform data into actionable insights and execution so you can not only access a treasure trove of data, but also know exactly how to answer the age-old question: now what?

Data is everywhere, even on Mount Everest: Sensor-to-cloud and extreme environments

Technology – from Mount Everest to the farm It’s amazing what technology can do when paired with human will. Just a few years ago, a team of scientists made history as they trekked up Mount Everest with the goal of running environmental studies. With backpacks full of sensors (which included FreeWave technology), these men pushed boundaries to create a new normal. When we intentionally use modern technology to our advantage, we can create better, safer and more productive environments within every industry. Today, the same technology used on Mount Everest is now powering multiple earth science programs transmitting sensor data from remote environments to earth scientists, climatologists and meteorologists through cloud servers. This is just one example of many where sensor-to-cloud solutions have transformed our ability to interact with extreme environments in the modern world.  A deeper look at extreme environments Typically, when someone thinks of an extreme environment, they imagine harsh, rugged terrain in a far-off remote location; however extreme environments aren’t limited by this definition. Take a large farm, for example, with a multitude of deployed assets and equipment across hundreds of acres. Traditionally, an operation like this requires an employee to physically check on the farm equipment multiple times a week, manually turning valves on and off, in addition to monitoring and controlling the overall farm environment. These day-to-day tasks are not only time-consuming but physically draining. In this case, the operational output required on the farm makes it an operationally extreme environment, and extreme environments are just one space where sensor-to-cloud solutions shine. Sensor-to-cloud in the real world Today, sensor-to-cloud systems utilize deployed sensors to collect and transmit data from remote locations. These sensors send the gathered information back to cloud servers for further research and analysis, enabling entire teams to utilize their limited time and resources more effectively. With sensor-to-cloud systems, we eliminate the often-laborious mechanics of middlemen procedures so that industry leaders can focus on what matters most. Let’s revisit that farming example. With sensor-to-cloud technology, farmers can automate the repetitive tasks of their operations. Something as simple as discrete soil sensors further allow farmers to virtually monitor their crop health, creating more time and space to focus on other high-value tasks. This gives them time, often an invaluable asset, to do what’s needed. In a sense, we can improve the productivity of an operation with an automated suite of  sensor systems. Imagine the difference a network of sensors can make. The FreeWave difference For several years now, FreeWave products have been a leading resource solution for extreme environments. Our sensors were a part of the great Mount Everest expedition, and today, we have deployed sensors in many areas, including pipelines in Alaska, ice shelves in Antarctica, smart farms across the country and many other locations – rugged and traditional. We are providing the groundbreaking technology needed to monitor data in extreme environments so that our partners and customers can make the best, informed decisions for their operations. As the Chief Technology and Product Officer at FreeWave, I am constantly amazed at the impact our products have on the world. We are working with some of the major brands of our time, helping them solve massive problems affecting society at large. Our technology solutions serve entire industries, like oil and gas, agriculture, transportation and traffic, as well as many others that contribute to the well-being of the globe.  It is great to be a part of a company where we can say our products are a part of the solution for life’s essentials. Every day, we help industry leaders identify their pain points and provide them with a single pane of glass product solution that helps them see the data wherever they are without the drain of additional resources. Our rich portfolio of radios, gateways, cloud software and analytics allows us to stitch together a range of packaged ready to use  applications that solve our customer’s problems through simple, turn-key solutions. Sensor-to-cloud in the future Data is everywhere, and now more than ever, we have the tools and resources we need to digitize the world around us. As we build the future, sensor-to-cloud solutions will continue to play a critical role in gathering, processing and managing data in extreme environments around the globe. As I look at the world before us, I see endless opportunities to continue to leverage technology and data to build a better and more informed life.

Technology Simplified: Leveraging Data in the New Digital Era

Excited by tomorrow, we face a new world filled with endless possibilities each day. Thanks to modern technology, simple sensors open the doors to our favorite restaurant, edge computing allows manufacturers to spot and correct production glitches before they happen, and high-tech traffic cameras analyze and record thousands of license plates daily to spot stolen and unregistered vehicles while also identifying suspected criminals. It’s no secret that the world is evolving before our eyes, and through the technological advancements of this digital era, we are creating a more efficient world. The power of data Data is a powerful tool of knowledge, and lucky for us, it’s everywhere! Every one of our actions is driven by a manual process of data – like the simple act of putting on a jacket when it gets cold, or an automated process of data – like a valve instinctively shutting off when a water tank gets full. Today we have the technology to effectively process, analyze and distribute data metrics in tremendously impactful ways. What does greater simplification look like for industrial leaders? Remote operations simplified When leveraged effectively, industrial internet of things (IIoT) solutions take remote operations to the next level, simplifying the work process for teams and industries across the globe. Think about some of the most popular high-value remote assets today, like drones, video surveillance, or even center pivot irrigation systems – these entities perform so well because they do what humans can’t. In mere seconds, IIoT technology can process, distribute and respond to data that would otherwise take an entire team hours, days or even weeks to achieve. In the not so distant past, industrial operations relied solely on data consumption (i.e., how much water is in the tank; what temperature is the water), but today, advancements give us the ability to respond nearly instantaneously to that collected data with actionable execution. Today we can view and control the management of an entire operation remotely on our cell phone. We can see how much water is in a tank or what temperature that water is at and automatically change and adjust the water levels and temperatures from near or far. As a result, the amount of time, resources and energy needed to run businesses has transformed entirely, and this evolution allows us to create an enhanced world and standard of work. Simple deployment Remote operations are oftentimes in rugged terrain, making them difficult or even impossible to access. At FreeWave, we solve this complex issue by providing pre-configured ready-to-deploy solutions, complete with everything needed to achieve the mission at hand. For example, through FreeWaves’s  joint venture with ModuSense, we’re simplifying connectivity to cloud with a variety of pre-configured and ready to deploy monitoring and sensing solutions by supplying the entire solution with a 12-month data plan, dashboard, 12W rapid recharge solar panel, satellite connectivity and Bluetooth connectivity. You can use your mobile phone to validate the data directly from the gateway without having to wait for satellite transmission. We all know the “gotchas” when it comes to buying technology. Simple deployment means you’re ready from day one, without needing to buy additional components. Real-world impact As Chief Operating Officer and SVP of Global Sales and Marketing at FreeWave, I get a front-row seat to the real-life impact modern-day technology is having on lives, businesses and entire industries. The essentials of life have become simplified, and in the process, more people and businesses receive greater access to the things that matter most like critical information, metrics and potential outcomes. Creating a more sustainable world and preserving natural resources like food, air, energy and water have been at the forefront of IIoT since FreeWave began almost three decades ago when we brought long range, low power consumption, C1D2, 900 MHz connectivity and radio technology products to our customers. Since then, our connectivity options have greatly expanded by adding EDGE Compute, Software, Industry Protocol Conversions, Data Broker & Cloud, a complete end to end solution and with it comes the responsibility for greater environmental stewardship. We’ve all seen the devastating impact an environmental catastrophe, like the 2010 Deepwater Horizon oil spill, can have on the globe. Simple mistakes can and do cause enormous repercussions that affect us all. The truth is, with human interaction there will always be the cost of time and possible room for error. Technology, however, is different, as it allows us to not rely solely on human capacity and depend more on interconnected and advanced systems. Now, we don’t have to wait for someone to run into a situation or crisis and manually pull a lever or travel to turn off a valve. Instead, preprogrammed automation or a simple click of a button or flip of a switch from virtually anywhere in the world can control your high value remote assets. FreeWave is  a technological pioneer in the 21st century. We have connected the unconnected with a reliable ecosystem of edge intelligent radios and solutions to optimize the extreme edge of remote industrial operations. Through our single IIoT platform, we provide expanded capabilities for data capture, analysis, control and automation. Our single pane of glass approach provides a simple, single vendor, one-stop-shop solution for remote operations worldwide. At the end of the day, when we take the power of data monitoring and funnel it through modern technology, we open ourselves up to a new world of endless possibilities and opportunities. It’s one thing to have data; it’s an entirely different thing to know how to leverage that data. At FreeWave, we are constantly pushing the boundaries of data monitoring and modern technology through our IIoT solutions and creating a better, safer and faster world of work for industries around the globe.

Data Connects Life: A Deeper Look at the Power of Connection for IoT Champions

Every day, the world shifts in a new digital direction, making our lives simpler and equally more complicated all at the same time. I can vividly remember the introduction of email. I had just started my career in tech, and I kid you not, my coworkers and I questioned the efficiency of this new digital communication system. Back then, taking the time to craft an email, when I could easily make a phone call or walk to the office next door, felt foreign and unproductive, but now, decades later, I can’t imagine my life or work without the power and ease of email communication.  If there’s one thing we can count on, it’s change, and when we meet change with adaptability and curiosity, we can create and sustain a more connected world, one where technology invites us to innovate, collaborate and engage with each other and the environments we live in!  More technology. More data. The Mckinsey Global Survey has found that our global response to the pandemic has accelerated the rate of technology by several years. What does that mean for real people? Over time, we have discovered a new world filled to the brim with data that both informs and transforms our day-to-day lives. From smartphones to traffic management systems, the Internet of Things (IoT ) is revolutionizing life as we know it, connecting us to more people, places and systems than ever before. Connection is a powerful tool, and when harnessed effectively, it can change the world.  The interdependent relationship between our natural and digital world is quite profound; in today’s society, we operate as one. In smart agriculture, for example, effective data can make a significant difference in overall crop and herd health, which, in the end, affects us all. Whether we’re on the farm, on an oil rig in the middle of the ocean or in our own backyards, technology connects us. Data is everywhere, and when this data is measured and distributed carefully, it transforms entire industries.  Accessing the data you need on your terms For the last 28 years, FreeWave Technologies has pioneered a unique IoT revolution, reinventing the way industrial IoT is used in the modern market. We connect the unconnected with a reliable ecosystem of edge intelligent radios and solutions to optimize the extreme edge of remote industrial operations. Through our software, we provide IoT champions with real-time data insights to create better and more sustainable businesses. To achieve transformative operational optimization, industrial leaders need visibility into data and the ability to proactively manipulate that data and act on the insights gained from it.  Our vision is to build an ecosystem of edge intelligent radios and solutions to transform the extreme edge of industrial operations into a connected part of their enterprise. Our integrated edge connectivity and computing solutions provide expanded capabilities for high-fidelity data capture, analysis, control and automation via a single industrial IoT platform that is readily scaled as each edge computing need evolves. We call it a single pane of glass. With a legacy of solving thousands of customer changes across multiple industries and deployment in 39 countries, the goal is to continue to future-proof operations so that remote work becomes more autonomous and, dare I say, simpler.  It all brings us more connected with our collective purpose to create a better and more sustainable world. Data connects life. The more we see, the more we understand, and the more we understand, the more equipped we become to make better decisions. As the Director of Marketing at FreeWave, I am closely connected to the people and operations most impacted by our work. I know firsthand how powerful connection is for the IoT champions we serve, and every day I witness the power of data to transform the world.  Putting it in perspective Take the water and wastewater industry, for example; in this industry, clear and controllable data insights are key to achieving effective operational management. At FreeWave, we provide these actionable data insights such as moisture levels and weather predictions through our sensor and weather monitoring technology, which ultimately allow water and wastewater industry leaders to be proactive in their business rather than reactive. A proactive and informed approach to operational management makes the difference in creating a more sustainable environment, and a more sustainable environment transforms our communities and the surrounding world.  FreeWave’s productivity technology is removing barriers to data and helping industry leaders solve unique challenges like never before. Where some people may only see tech software – a little box with some wires, chips, and sensors  – a much deeper reality occurs. We are all connected, and today, IoT champions get to leverage the power of this connection, along with technology and data, to create a better world, one industry at a time.  I am so proud to work for a company that is connecting the world in unique and innovative ways. Every day, I see the impact of technology and what it means to be more connected through data, giving us critical insight. What we do with that data is where the magic happens. This is where we can use connectivity to push boundaries for greater innovation, make best use of our people, create safer work environments by understanding what’s happening in hard-to-reach terrain, and even take bold action to architect a more sustainable world.    

Autonomous Tech and Self-Driving Cars Dominate the Headlines

The autonomous tech industry is poised to explode, driving job growth and technological innovation. Everything from self-driving vehicles to automated infrastructure is sitting on a precipice of advancement that can be a truly momentous step into the era of the connected world. This week, we are focusing on some of the industry news surrounding autonomous vehicles, including the manufacturing aspect, their space in a smart city, and how major metropolitan areas initially resistant to the technology are starting to come around. In Japan the Race is On for Self-Driving Cars   IMAGE by Takashi Aoyama  According to a recent study by the Boston Consulting Group, fully autonomous vehicles are expected to account for a quarter of all new cars by 2035 — a slice of the auto industry totaling around $77 billion. While automakers across the globe are racing to become a leader in this new tech, no where is the competition more intense than in the auto-manufacturer rich island nation of Japan. This recent article from the San Francisco Chronicle notes that Toyota, Nissan and Honda have all made significant investments in developing autonomous tech. The autonomous vehicle race is particularly impactful because of the major implications to not only car OEMs who have to fundamentally change the way they approach their product, but to the hardware and software companies building the technology that will support these highly sophisticated (and regulated) vehicles. Could Owning an Autonomous Car Make You “Traffic Elite”?   IMAGE courtesy ZDNet If you end up being an early adopter of new autonomous tech, you may find your commute becomes shorter. ZDNet explains that a recent proposal from UC Berkeley grad students suggested the creation of a “Hyperland” — a special traffic lane reserved just for self-driving vehicles. If you want to be in the Hyperlane, you better not mind a brisk ride as the special lanes would allow for speeds over 100mph. The traffic on the Hyperlane would be controlled by a central computer that monitors traffic congestion, speed, and other variables through advanced sensor arrays and keeps traffic flowing freely. The project will cost a cool $11.4 per mile of road, so travel will likely come with a toll to ease the financial burden. Self-Driving Cars Job Market Booming   IMAGE by Gene J. Puskar, AP With so much emphasis on autonomous driving, cities are rushing to cash in on the movement. According to the Detroit Free Press, the advanced driver assistance systems and autonomous vehicle market was around $5 billion in 2015. It’s projected to grow to $96 billion by 2025 and a staggering $290 billion by 2035. This massive market growth has led to a number of cities across the country pitching their location as the “place to be” for autonomous tech. From Austin to Pittsburgh, automakers, OEMs and even government officials are pushing for their city as the best spot for innovation in the autonomous vehicle space. So will it be Detroit or Silicon Valley? Or one of a host of other cities vying for a slice of this massive cash cow? Time will tell. Better Late than Never: New York Easing Up on Laws for Driverless Vehicles   Back in 1971, New York passed a state law insisting all motor vehicles have a driver with at least one hand on the wheel at all times. Back then, this seemed that a pretty standard rule — but with the advent of self-driving cars, the rules of the game have changed. A recent article from the Democrat and Chronicle noted that until recently, New York was the only state the explicitly banned driverless cars from its roadways. However, the state has now approved a pilot program to allow the testing of driverless vehicles under certain conditions. State Senator Joe Robach was a vocal advocate for the new change. “While the technology for fully driverless cars is in the future, consumers certainly appreciate the automated technology that is currently in cars, including lane assist, self-braking, hands-free park assist and collision avoidance,” he said. “The legislation that was passed earlier this year ensures that driverless cars can be tested on the roads that future consumers in our state will use them on and are tested responsibly.” Audi of America is the first automaker to get approved for the new program, with other manufactures expected to jump on board in the coming months.

IIoT News Headlines: Trains, Agriculture, Underwater and More

IIoT News Trains

Industries around the world are being transformed by the Industrial IoT. We recently shared a blog with a report that estimates IIoT will experience explosive growth and approach one trillion dollars by 2025. From trains and under water applications, to agriculture, we are already seeing IIoT expand its reach today. However, we continue to see security as one of the biggest challenges – which continues to top news headlines. Below are some of the recent IIoT stories that have caught our attention: How Siemens Is Using Big Data And IoT To Build The Internet Of Trains By: @BernardMarr | Published on: @Forbes  “Siemens AG is one of the world’s largest providers of railway infrastructure, serving rail operators in over 60 countries. Through harnessing Big Data, sensors and predictive analytics they say they can now guarantee their customers close to 100% reliabilit It calls this the “Internet of Trains” – the on-rails segment of the wider ‘Internet of Things’ concept which describes how everyday objects of all shapes and sizes can now be connected together online and given the ability to communicate and capture data for analytic purposes.” Agriculture Is The No. 1 Opportunity For African Internet Of Things, Security The No. 1 Challenge  By Tom Jackson | Published on: @AFKInsider “Agriculture, Africa’s largest economic sector, is likely to be central to the growth of IoT. There are many examples around the world where value can be unlocked from enhanced efficiencies along the value chain. Mining, oil and gas, telecommunications and manufacturing will have to adopt IoT to improve efficiencies.”   The Internet of Underwater Things Published on: @NauticExpo_eMag “The development of an Internet of Underwater Things (IoUT), transmitting data throughout the ocean could make possible a system of roaming, autonomous vehicles and underwater sensors, all communicating with each other and relaying information to networks above the surface. This could be used for a wide range of submarine tasks, from pipeline repair and shipwreck surveys to seismic detection and ecological monitoring.”  IIoT and The Cyberthreat: The Perfect Storm of Risk By: @ChrisGrove_Geek | Published on: @MBTwebsite “Many of these newfound risks did not previously exist, mostly due to the lack of interconnectivity and the network ‘air-gap’ — which has become a thing of the past. As industrial organizations race to keep up with advances in manufacturing technologies, IT is increasingly encroaching into the OT world. It’s no longer uncommon to find IT technologies like Ethernet, Wi-Fi, the Cloud and cybersecurity products like virus scanners, firewalls, Intrusion Detection/Prevention Systems and Security Information/Event Management (SIEM) products being managed outside the purview of IT.”   It will be interesting to see how the IIoT continues to transform industries. What are some of the interesting use cases you are seeing as the IIoT growes? What are your biggest security concerns when it comes to IIoT?  

Data that Drives Electric Vehicles

There was a lot of hype surrounding electric vehicles when they first hit the market for consumers. Supporters saw electric vehicles as a key solution for battling gas prices and making a positive impact on the environment. Over the years, several countries throughout the world have incentivized the purchase of electric vehicles through subsidies available to both the car makers and the buyers. However, as we roll into 2017, sales are short of expectations in the U.S. Currently, we’re seeing only about 400,000 electric vehicles on the road. In President Obama’s First term, he said that he believed the U.S. could have one million electric vehicles on the road by 2015. When January 2016 hit, the estimate was looking like it could take up to another four years to accomplish the goal – especially with continuing low gas prices and troubled electric vehicle battery technology. To help further the push towards electric vehicles, the White House recently hosted an electric vehicle datathon to find and discuss what data would drive the deployment of more electric vehicles on U.S. roads. The event was co-hosted by the U.S. Department of Energy and four National Laboratories. The White House announced that electric vehicle experts, automakers, charging-station providers, cities and states collaborated with software-development and data-analysis communities as the group looked for answers to the electric vehicle challenges. Together, they worked to better understand how plug-in (electric) vehicles contribute to and help the environment and economy. They also worked to find out find out what it will take to make U.S. consumers more interested in purchasing electric vehicles. Electric Vehicles and the Right Data Electric vehicle manufacturers, well aware of the challenges and slow adoption, have also worked to provide U.S. citizens with appealing electric vehicle options. During the R&D process, these manufacturers are challenged with improving vehicles to increase purchases and usage in the U.S. Battery challenges aside, careful selection of communication technology is essential to improving data and performance of these vehicles. Without proper data collection and transport, vehicle performance cannot be analyzed and improved. One of the leading electric car companies uses Sensor-to-Server (S2S) solutions for RTK base station communications to improve data and correlation. As the Internet of Things (IoT) infiltrates more areas of our everyday life, S2S solutions designed to be robust and reliable in heavily industrial environments work as a communication solution for many industries across the board. From typical industrial environments like oil/gas and water/wastewater, to smart cities and the automotive industry and more specifically, electric vehicles. S2S solutions offer high-speed, long range connectivity with 900 MHz RF technology and they can support third party applications. As the electric vehicle industry looks to data for overcoming challenges, these solutions are designed to collect, protect, transport and control critical data from network end points all the way back to the server. Electric car manufacturers have a ways to go in terms of driving more adoption from consumers, but they have a nice selection of IoT and sensor-based technologies to help improve data and communications.

All Aboard the IoT Railway

In many parts of the world, rail represents a major component of infrastructure – for the transportation of both humans and goods. In fact, railways are critical to some of the major industries like oil and gas, agriculture, and food refrigeration/transport. Much like those industries have, over the years, adopted automated, machine-to-machine (M2M) technology, railroads have similarly deployed more advanced technology over the years as well. Railways began the “automation” process by adding Automatic Equipment Identification (AEI) tags back as early as 1989. These sensors track the specific item tagged, but they have no way of knowing how the train is operating as a whole. Companies also began deploying RFID tags to track goods being transported along the different lines. The AEI sensors could provide information on the rail car and would interact with the various readers along the route. The additional sensors were great for location awareness, but still lacked the ability to monitor all the moving parts on the train. Still, with these two initial steps, the early stages of Internet of Things (IoT) technology began to come into focus for the railroad industry. IoT Railway Solution The rail industry needed a way to develop a more intelligent infrastructure that enabled Sensor-2-Server (S2S) data transmission via a network of Wi-Fi and voice, video, data and sensor control systems. Due to the massive amount of data collection a system like this would develop, railways are now developing a fully digital service that is directed toward centralized facilities capable of aggregating data from different sources and streams and analyzing that data in real-time. For instance, today, railroad sensors monitor everything from rail car and locomotive health, to track conditions, air temperatures, stress gauges and component conditions. Having a centralized system allows operators to take that data being collected  and use it to develop predictive maintenance practices; that is, the ability to predict when a section of rail or a specific component is in need of repair or near failure. Predictive maintenance is only one component of IoT integration for the rail industry, but it is one that can potentially transform practices across the board, ultimately saving companies time and money – valuable elements for an industry centered on logistics. Across the pond, the University of Huddersfield’s Institute of Railway Research has found that tracks can be monitored with inexpensive sensors set to operate by the vibrations of oncoming trains. According to the research, the sensors will still operate if one of the sensors is damaged, because of a built-in fail-safe. These sensors are projected to detect both approaching trains and the real-time conditions of the track. Adding an IoT network to trains can help improve safety and efficiency with traffic congestion, monitoring and control speed. Even the non-critical business operations have the ability to operate efficiently on the train with the help of modern sensors. Beyond rail sensor networks, there is also the consideration of the passengers as well. If railroads can implement Wi-Fi networks on passenger cars, passengers will be able to receive travel updates, railroad companies can develop specific apps for their travelers, and riders can enjoy the utility of internet in areas that previously lacked service. Although rail remains largely an industrial consideration in the United States, the growth of IoT technology available to the greater industry bodes well for the continued development of this infrastructure around the world.

Emergency Response From Sensor-2-Server

Emergency response agencies are adding Sensor-2-Server (S2S) communication technologies to their tool belt, thus changing the way our local municipalities operate. As we head in the direction of a more connected world through the Internet of Things (IoT), we see increased efficiencies within our cities and local government operations. For example, municipalities can leverage S2S technology for monitoring and control of their traffic management systems to improve flow of traffic to support community growth or pain points within the local traffic infrastructure. These Smart City types of applications also extend into emergency response. Large scale emergency situations and natural disasters often lead to disabled or overloaded cell towers and disconnected Wi-Fi. When all forms of communication are severed, first responders face the challenge of conducting rescue efforts with extremely limited visibility into identifying which locations require immediate help and conditions of the affected locations. If local government or municipalities leverage Smart City applications to stay online during emergency and disaster recovery situations, response times increase, risk decreases and lives can be saved. A Sensor-2-Server (S2S) solution robust enough to maintain communications during worst case scenarios will provide a mission critical communication link that keeps responders connected. Further, solutions that support voice, video, data and sensor (VVDS) information can aid in complete, accurate assessment during the emergency as well as detailed follow-up after emergencies and disasters are over. Finding a New Solution for Emergency Response Secure wireless communications are a key component to successful emergency response and disaster recovery for Smart Cities. With technology specifically built for harsh outdoor, industrial locations and proven to perform under the most extreme environmental conditions, local governments and municipalities can create emergency response and disaster recovery protocols that would significantly reduce collateral damage. Wireless shorthaul communications solutions with robust Wi-Fi links support VVDS, giving responders a substantial advantage during emergency situations. In a situation where every moment counts, having that connection could make the difference in saving someone’s life. Benefits of Leveraging S2S Solutions with Emergency Response Agencies Functioning even when power outages are plaguing a city, there are a number of ways a Sensor-2-Server type of network can be leveraged by the local government: ⇒ Reduce Risks Significantly reduce the risk of injury for firefighters and first responders. By leveraging video, responders can examine and assess damage after a weather-related incident without having to enter unsafe buildings or areas. ⇒ Assess the Situation Streamline the post disaster assessment by first responders from all directions and relay critical information to headquarters. By leveraging voice and video capabilities responders get an accurate assessment of a situation from every angle and create a faster, safer evaluation than a manual process. ⇒ Increase Response Time When communication networks are down, emergency crews can leverage the secure wireless edge network. Emergency crews can respond faster because messages and instructions are relayed via VVDS rather than manually. ⇒ Protected Data Keep unwanted parties out of the network. Leverage secure encryption capabilities to prevent data hijacking and increase network security. Some solutions will offer a secure, dedicated channel for emergency communications that does not interfere with tactical plans. When a municipality becomes a Smart City, first responders can be highly effective and are better able to protect themselves from the dangerous situations they face. As S2S communications shape the future of municipal communication networks, voice and video can be incorporated into the network. With this new, rich data, emergency management teams can enhance their emergency response protocol and improve emergency planning.

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.

Did you find what you were looking for?

Please let us know if you didn’t find what you were looking for so we can help make the site better for you.