A Story Three Decades in the Making
Milestone birthday alert. FreeWave turns 30 in 2023 and I’d like to take you on a journey of data over the last three decades – taking a look at where data has been and its sci-fi-like role in our future. Since FreeWave is all about transforming data into real knowledge for real people, I drew from a broader perspective about the bits and bytes of the data of life. The ideas here are inspired by FreeWave’s innovation team. From a serial inventor to our founder, each has shaped the field of technology in their own right. Sure, the first time someone uttered the words “big data” (October 1997, in case you’re curious) is interesting, but how has the term itself changed the way we live and work? As Steve Jobs said: “You can’t connect the dots looking forward; you can only connect them looking backwards.” Thus, this is more taking stock of data’s backstory over a cold IPA than a mundane timeline. Thirty candles on the cake commands a little self-reflection. The wild days of our youth are behind us. We’re all grown up now, and while data may be following its own trajectory, the parallels are pretty fascinating. I start where all great stories begin. My “why.” I grew up in the Midwest where a lot of the technology that we use today was born and innovation spans generations. I remember “playing office” with with my father’s paperwork at home (I guess remote offices were a thing, back in the day). He worked at Motorola (a company I would later join) for decades. He was a regional sales rep during the the early 80s when he was on special assignment, working on this thing called “cellular.” His company car’s trunk was filled with black boxes – and there was even a phone mounted in the center column between the front seats. It was cool to use. I thought I was cool for being able to use it. So, I was hooked, not only on technology, but the data seemingly flying there and there to make that all possible. From there, I guess I just followed in Dad’s footprints, although I chose a marketing path, and 40 some years later, here I am, still watching technology expand. Still fascinated by how those ones and zeroes are writing the world’s story. It’s 1993: Do You Know Where Your Floppy Disks Are? The year is 1993. Bill Clinton is president, Beanie Babies have hit the market, Intel has introduced the Pentium microprocessor, and 3½ inch floppy disks in bright colors are scattered across desks (unlike its austere sibling, the silver compact disk). In a small office somewhere in Boulder, Colorado, the FreeWave cofounders are meeting with a couple of ladies who make dreamcatchers. FreeWave was born among the likely stacks of floppies used to store code for FreeWave products to come. And, we can’t forget that the then new Colorado Rockies threw out its first pitch in the National League West (to date, we have never won our division – but, boy, we’ve got great mountain views!). “When we first started, wireless was used in many applications, but not to anywhere near the extent it is today. The early applications for our products were the precursor to IIoT (Industrial Internet of Things) and showed how important data was,” says Steve Wulchin, CEO and cofounder of FreeWave. After earning his MBA at the University of Texas, Steve was hired by Hewlett Packard. His first desktop computer at HP had a 5MB hard drive (yes, megabytes!). Cell phones and the internet didn’t exist, and Apple was a company that was pretty much left for dead by the rest of the tech world. That, he says, is the cool thing about technology. “Look at where we are now,” he says. “We may not have flying cars, but we do have a lot of unbelievable things that few could have imagined back then.” Like technology, life has its own twists and turns. “I never planned to move to Houston post-college, never planned to get an MBA, and absolutely never planned to start a company,” says Steve. Yet, he did. FreeWave has come a long way and is now innovating around end-to-end solutions so companies better understand operational, performance, and revenue opportunities through their data. Also from the 90s, computer scientist Michael Lesk writes: “There may be a few thousand petabytes of information all told.” (IDC predicts the global datasphere will reach 175 Zettabytes by 2025.) Using data as insight also saw the light of day. In 1993, digital mobile phones went from analog to digital, giving way to applications, data transfer, and mobile hotspots. In 1995, M2M began using cellular as a backhaul solution. And in 1999, SMS pricing and data plans fell to affordable rates. Things, the Rise of Data in the Aughts and the Value of Insight Once people realized Y2K (for zoomers, this was the potential crash of computers on December 31, 1999) was a non-issue, the world was off and running. We snapped photos with our phones, put our taxes on flash drives, carried a thousand songs in our pocket, and connected on Facebook. During the 2000s, “things” like washing machines were predicted to connect to the internet and order detergent. So far, most of us are still putting Tide on the grocery list. However, IoT has indeed given rise to a tsunami of data. According to the IoT Analytics “State of IoT—Spring 2023” report, the number of global IoT connections grew by 18% in 2022 to 14.3 billion active IoT endpoints. In 2023, the global number of connected IoT devices is predicted to grow another 16%, to 16.7 billion active endpoints. In the plainspoken world of marketing where I play, a “billion active endpoints” is a lot of data flowing through a lot of connected things. The term “big data” was first used at an IEEE conference on visualization in 1997. Michael Cox and David Ellsworth authored “Application-Controlled Demand Paging for Out-of-Core Visualization,” stating: “Visualization provides
The Whats and Hows of the Ultimate Dashboard for Industrial IoT
If you use the internet of things (IoT) devices to monitor or automate certain business operations, you may be wondering what to make of all the data those devices generate. Collectively, IoT devices across the globe will generate almost 80 zettabytes of data by 2025, according to International Data Corporation (IDC) projections. A zettabyte equals a trillion gigabytes. In layman’s terms, we’re talking about oodles and scads and gobs of data. At the business level, data collected from IoT-enabled devices could conceivably be entered into a spreadsheet, but data presented in this manner becomes overwhelming and even incomprehensible. A much better way to store and make sense of your data comes in the form of an IoT dashboard, which visually represents relevant data in such a way that you gain at-a-glance, actionable insights regarding your operations. An effective IoT dashboard allows you to make data-driven decisions to optimize efficiencies, troubleshoot problems, and make other adjustments and improvements that could potentially impact profit margins. Dashboard Design and the KISS Principle — Keep it Simple, Stupid Think about the dashboard display in your car. It doesn’t show you everything there is to know about the vehicle. Imagine how overwhelmed and distracted you would feel if it presented you with minutiae such as the condition of your tire tread, how many cubic inches of trunk space you’re using, the precise amount of antifreeze you have, the decibel level you top out at when singing along with the radio, and so on, ad nauseam. All this information crammed onto your dashboard would make it difficult for you to drive and make important, time-sensitive decisions, like when to stop for gas. That’s why the dashboard display is limited to what you need to know to drive safely and efficiently: How much fuel do you have? How fast are you going? How many miles per gallon are you getting? A well-designed IoT dashboard also only shows you data that you’ve prioritized in accordance with your business objectives, with the ability to pull up additional data points as desired. A well-designed dashboard prompts you to a view of data sets that you can select, creating an unfussy, easy to understand, and up-to-the-minute snapshot of in-field device and system-level performance. Effective Dashboard Design — It All Starts with You When it comes to selecting the best IoT dashboard for your organization, the first step is to define your business goals. Before requesting demos or engaging an IoT dashboard vendor, identify what you want to learn and achieve with the data you collect. Your business goals will determine the dashboard design you choose, as well as the type of data and performance indicators you need to track to meet your goals. For example, if your business goal is to improve the efficiency of your manufacturing process, you might want to track equipment downtime, production output, and raw material usage. Another scenario might be an oil and gas company wanting to track performance by optimizing existing wells, improving oil recovery, and minimizing its carbon footprint or emissions. Having defined your business goals, you can then determine which metrics matter most and how best to display them to facilitate decision making. Then, you can look for a dashboard that has the necessary features and functionalities to help you meet your business objectives. Dashboard Deliverables — What You Should Look for When Evaluating Your Options IDC estimates there will be 55.7 billion connected IoT devices by 2025. The IoT dashboard and platform market, though still quite young, is growing exponentially. With an ever-increasing number of options, choosing which vendor and product will best support your business goals can be as easy as working with a leading IoT network provider. We will discuss what to look for when considering your options, after a brief clarification of terms. You may hear the words dashboard and platform used interchangeably, so think of the dashboard as the user interface within an IoT platform that allows you to interact with your connected devices. The dashboard is both a control panel and a visual representation of key data your IoT devices collect. The platform is the dashboard’s pre-built foundation. Platform-based dashboards are typically more practical than out-of-the-box dashboard solutions, provided the platform is well-engineered. And a well-built platform is, first and foremost, generic. A Solid Generic Framework with Customizable Features and Functionalities In the case of information technology platforms, “generic,” ironically, is a positive descriptor, synonymous with user-friendliness and adaptability. Generic IoT platforms allow for customization, and FreeWave’s data platform comes with an array of templates and widgets that allow you to create a custom dashboard almost as easily as snapping together those beloved Lego® building blocks from your youth. The lesson here is the less “generic” the platform, the greater the likelihood you’ll need to hire someone to configure your initial dashboard and reconfigure it time and again as your business strategy evolves. Effective dashboards are intuitive and interactive. They are not a data dump, but rather convey information hierarchically through charts and other data visualizations, enabling you to extract actionable insights, receive alerts, identify patterns and trends, make projections, and run various scenarios with the aid of built-in analytics and machine learning. If you want to dive deeper into your data, interactive drill-down and click-to-filter features guide you through multilayer displays. You by no means have to be a programmer to design an effective IoT dashboard, but if you need a little extra assistance, look to an IoT platform provider for help. As a convenience to customers, FreeWave is enhancing its distribution network with specialists trained to assist in defining your user interface, in accordance with your business goals. Decision-making Support Through Data Storytelling Designing an industrial IoT dashboard begins by defining what data you want to see and why. It’s an involved process, but the end result should be a simple data story, with key takeaways highlighted. Once you’ve created your ultimate IoT dashboard, you’ll gain a competitive edge for your organization as the intelligence embedded
IoT and the Carbon Market: How Data Can Help Drive Decarbonization
Let’s set the stage for what greenhouse gasses are by using a familiar scenario. You’re walking in a greenhouse. That warm, damp air that you feel on your skin and the additional sunlight that warms the space likens it to a 24/7 hot yoga session for plants. That, in a simple example, is the greenhouse gas effect. Now, take that greenhouse and expand it to the size of the planet. Imagine the world as one large terrarium with man-made greenhouse gasses (GHGs) trapping heat in the atmosphere. The impact, according to the United Nations Environment Programme (UNEP) Emissions Gap Report, is measurable and critically damaging to life on planet earth. Global temperatures are expected to rise at least 2.7C this century. The report goes on to say that GHGs need to be halved by 2030 to avoid a climate catastrophe. According to the Environmental Protection Agency (EPA), one of the leading GHGs is carbon dioxide (CO2), which accounts for 79% of all GHGs from human activities. Reducing CO2 (or decarbonization) is critical. The EPA points out that carbon emissions alter climate patterns and that “human health, agriculture, water resources, forests, wildlife, and coastal areas are all vulnerable to climate change.” Fortunately, data available from Internet of Things (IoT) technology can help accelerate decarbonization efforts as explained, in part, below. The Intersection of IoT and Carbon Markets As the world faces the challenge of reducing GHG emissions, industries are turning to regulated carbon credit markets and voluntary carbon offset markets to help them shrink their carbon footprints. Carbon markets — where carbon credits and offsets are sold and bought, similar to commodity futures like grain — provide a way for industries to compensate for unavoidable emissions by investing in certified projects that reduce or remove carbon dioxide from the atmosphere. These projects mitigate the environmental impacts of industrial operations while helping organizations work toward net-zero commitments and environmental, social, and governance (ESG) reporting goals. Carbon credit markets create accountability. Along with international pacts to drastically lower GHG emissions, consumer demand to reduce environmental harm is spurring carbon market growth. This demand is driven by deep-seated concerns that are literally keeping Americans up at night. A new survey from the American Academy of Sleep Medicine (AASM) reveals that one-third of adults (32%) “always or often” lose sleep due to worries about environmental issues. Investing in carbon offset projects shows that an organization’s commitment to combat climate change goes beyond lip service. A worldwide awareness of climate change could be one reason companies are taking note. The voluntary carbon market recently exceeded $1 billion in global value and could surpass $30 billion in annual value by the end of the decade, according to a Bain & Company report. While investments are clearly on the rise, “the carbon market has reached a crossroads,” the report states. That’s because carbon markets today are built largely on trust — and as it turns out, that trust is tenuous. Enter the critical role of data. Verification methods for carbon offsetting lack uniformity, which raises uncertainties about the fair market value of credits as well as doubts about the efficacy of the projects they fund. As a result, many organizations that need carbon offsets to meet their net-zero commitments have nevertheless chosen not to buy them. For carbon markets to achieve their potential, reliable emissions measurements and data are needed for valuation and verification. “Zero Trust” Begets Absolute Trust Leveraging IoT technology consisting of sensors, network configurations, and cloud-based analytics can significantly improve the accuracy, reliability, and scalability of the carbon offset verification process. That’s where FreeWave comes in and its partnership with Inmarsat to provide global coverage, collecting IoT sensor data from anywhere and transporting it to the cloud for analysis and action. The FreeWave platform has reputable third-party auditors who analyze data to confirm the efficacy of certified carbon offsetting projects. For example, in a reforestation project, auditors can accurately measure and convey to offset buyers how much carbon is being sequestered, and it won’t be long before buyers, through a dashboard, can track these measurements themselves and compare them against a projected scenario of how many tons of carbon emissions would have occurred were it not for the project. Using incontrovertible metrics to assess project performance increases investor confidence, while sellers can ensure that their credits are backed by measurable emissions reductions. This could ultimately help move the voluntary carbon market toward a more transparent, zero-trust model. When there’s absolute trust in carbon market performance, the value of carbon offsets will increase. That’s good news for industries like smart agriculture that can potentially capture more carbon than they produce, enabling them to sell offsets as an additional revenue stream. Beyond Carbon Markets — Sustainability Best Practices Carbon offsetting is part of a holistic sustainability plan that starts with reducing the use of fossil fuels and pollutants, taking carbon reduction efforts as far as possible before offsetting any remaining emissions. Here, too, IoT and FreeWave come into play, deploying technologies that improve operational efficiency while protecting and conserving natural resources. Growers, for example, can use sensor data to optimize efficiency for irrigation and fertilization programs. IoT data allows agriculture and other industries to monitor and manage their environmental impact. It also gives them data-based ESG impact reports that they can use to their competitive advantage — and to discredit accusations of greenwashing (exaggerated claims of environmental practices). Most business leaders (76 percent) in major industries doubt their peers’ ESG reporting, according to recent research by satellite solutions provider Inmarsat. Beyond the environmental and humanitarian imperatives, investing in climate-smart IoT technologies can be part of a long-term revenue enhancement strategy. We at FreeWave believe that products that are verifiably carbon-neutral will warrant premium pricing in the eyes of environmentally conscious consumers, just as produce grown organically commands a higher price. The Journey to Net-Zero Most business leaders believe that data collected via IoT solutions is critical to building trust (81 percent) and improving ESG outcomes overall
Satellite Connectivity Becomes Next-Generation Tech for Remote Operations
The future of IIoT connectivity is up in the air — literally. Space is the new frontier for IIoT connectivity, as satellite connectivity is fast becoming the networking solution of choice for many industrial use cases. IIoT, or the industrial internet of things, refers to an ever-expanding ecosystem of sensors, networking equipment, and analytics, which work together to collect, transmit, and analyze data from “things” used in industrial operations. Data transmissions from industrial assets help guide business decisions or automatically trigger actions. For example, in agriculture, IIoT-enabled irrigation systems monitor soil moisture levels, weather forecasts, and other data points to help growers determine the best time to water, or the IIoT solution can automatically activate sprinklers without human intervention if programmed to do so. When talking about satellite, this two-way communication reveals the next-generation tech for remote operations. First, though, let’s take a quick glance back. What Satellite Connectivity Means for People in Remote Areas FreeWave started by helping customers transmit mission-critical data using radio technology in 1993. We’ve seen the evolution of communications since then, with not only our rugged wireless radios continuing to serve the future of the oil and gas industry, but also the advancement of satellite for people leading remote operations. Traditionally, IIoT has mostly relied on cellular connectivity and other terrestrial solutions for data transmission, but as IIoT continues its push into underserved locations — from remote grazing pastures in Colorado to offshore oil platforms in the Pacific Ocean — cellular solutions pose some serious limitations. Connecting people, not things, is the foundational purpose of cellular infrastructure development, so in sparsely populated or remote areas, cellular service may be limited or even surprisingly unavailable. While other non-cellular connectivity solutions exist, for certain circumstances, satellite is becoming a more viable solution, offering distinct advantages. Competition is driving rapid innovation in the IIoT satellite space even as it drives down costs. As a result, companies that previously encountered lack-of-coverage or cost barriers with the various terrestrial networking options now have an affordable IIoT connectivity solution in the form of satellite — with cost savings between four and 20 times what they once might have paid. Satellite connections are, by definition, wireless and don’t require remote operators to install fixed lines — DSL lines or coaxial cable — for data transmission. This added flexibility gives companies the freedom to scale their IIoT applications quickly and easily as their needs and business goals evolve. For example, a major agriculture company with an expanding customer base in remote parts of Brazil, Argentina, and Chile announced it will use satellite connectivity to operate autonomously driven tractors in those countries. In these remote areas with no cellular or Wi-Fi coverage, real-time communication through satellite connectivity allows farmers to stop and start the tractors and other unmanned equipment, monitor the equipment’s performance, and determine what to do when a tractor encounters an obstacle — all through an app-based control panel from afar. Meet LEO and GEO Not all satellites are created equal, however. There are three common satellite types: Low Earth Orbit (LEO) satellites, Medium Earth Orbit (MEO) satellites, and Geostationary Equatorial Orbit (GEO) satellites. LEO and GEO represent the two altitudinal extremes and are most commonly used for IIoT connectivity. LEO satellites are smaller and orbit closer to the earth, so launching them is less expensive. LEO satellites circle the earth several times a day, so multiples are needed to fly in succession over the target geographic area in order to provide consistent coverage and avoid dataflow disruptions. The ground equipment needed to monitor and maintain LEO satellite constellations is also extensive. GEO satellites — a type of geosynchronous orbit (GSO) satellite — also orbit the earth, but they do so along the equator in the same direction and at the same rate the earth is spinning. Hence, from our vantage point, a GEO satellite looks like it’s standing still since it is always above the same location. Its daily orbit notwithstanding, a GEO satellite, for all intents and purposes, stays “parked” above the area that needs coverage. Since GEO satellites are continuously visible, ground station tracking is not required, and their greater height offers substantially more geographic coverage; in fact, only three GEO satellites can provide whole-earth coverage. LEO satellites and GEO satellites both have their place in IIoT connectivity. With less distance for signals to travel, LEO satellite solutions historically have offered lower latency rates and higher bandwidth capabilities, although newer GEO satellite solutions offer these capabilities now, as well, with a signal-bounce delay of about one-quarter of a second. The end user’s needs, business goals, and budget will determine which IIoT satellite solution is best. We’re seeing an increasing need for two key requirements for satellite connectivity — real-time or near real-time data transmission and two-way communications. Can Satellite Connectivity for Remote Operations Minimize the Impact of Catastrophes? Environmental catastrophes happen more frequently than we are even aware. Being able to positively impact a critical issue before it happens is certainly the goal of many. IIoT and its network-connected sensors and dataflow provides the catalyst for alarming and alerting to help alleviate the impacts of disastrous situations whether they be natural phenomenon, human error, or otherwise created. FreeWave has expanded our footprint in the environmental space, helping customers deploy early-detection IIoT sensors that alert the appropriate personnel in the event of a disaster. Let’s take the case of a timber company using sensors to detect lightning strikes or approaching wildfires. Strategically placed sensors are programmed to detect various gas profiles indicative of those events. A delayed alert could spell disaster, so real-time notifications are of paramount importance. The same is true for oil and gas companies that receive alerts before a catastrophic equipment malfunction—real-time alerts to what’s happening in the field could save millions of dollars and prevent environmental devastation and other ramifications. One-way and Two-way Satellite Communications In many use cases, two-way communication is needed to optimize industrial operations. Some IIoT connectivity solutions only transmit data one way, from the
2023 and Beyond: A Visionary Q&A with FreeWave
With fresh insight and excitement for the year ahead, the FreeWave leadership team discusses their vision for the future, predictions about the evolution of data, and collective approach to protecting life’s essentials. Though you might not find their names in the next Marvel film or DC comic book, industrial leaders – whether in agriculture, energy, utilities, or another resource industry – are the heroes of the modern world, real-life Guardians of the Galaxy, if you will. These heroes fight today’s challenges every day, while life’s essentials like food, air, energy, and water are threatened daily. With technology at the ready, industrial operators continue to come to the rescue, finding innovative solutions to defend the planet and preserve its most precious resources. At FreeWave, our goal is to continually build upon technology advancements to help you build a better world within your industry. With 2023 right around the corner, we asked four of FreeWave’s senior leaders, including Kirk Byles (CEO), Michael Tate (COO), Parthesh Shastri (CTO), and Jeff Horton (CRO) to share their thoughts on how FreeWave Technologies is helping the heroes of today protect life’s essentials to create a better tomorrow. ___________________________________________________________________ Q: What is one of your favorite FreeWave memories from this past year? Kirk Byles: It’s hard to even remember before this quarter, but the Reinke Dealer Conference was definitely a top highlight for me this year. Not only did it show the work our collective teams have been doing to build relationships and finalize a new product offering, but it was also really cool to see the impact our work is having in real-time, as we partner with Reinke – one of the largest pivot irrigation manufacturers in the world – to help growers and producers save water and raise crops. This was really big. Parthesh Shastri: This year, we really came together across disciplines within FreeWave, too, increasing our focus on target outcomes to deliver products that our customers use and deploy in the field, and we had a lot of fun while doing it! As we look at 2023, we are excited to scale this model and implement it across new industries. Q: How is FreeWave helping industrial operators protect life’s essentials? Jeff Horton: The top thing that comes to my mind is bringing automation to irrigation. We work closely with our partners, like Reinke, to provide real-time analytics, which saves a lot of water and nutrients, and both of these things are invaluable for farmers. Technology also helps to reduce fuel consumption on ranches by eliminating the need to manually check cattle watering tanks. Some producers often spend 12 to 15 hours a week driving around just to look at their water tanks. Think about the wear and tear on those pickup trucks or even the rising cost of fuel. Being able to reduce greenhouse gas and save these guys money while also producing a high return on investment is a really big deal. We can do that easily with the Tank Level Monitor. Mike Tate: And it’s not just the ROI. These producers are suffering. Ranching is not the lucrative business that it once was, and these ranchers are getting beaten at every turn. A lactating cow needs one gallon of water for every hundred pounds, every six hours! Water is a huge concern for both producers and growers, and being able to give them back more time while reducing their expenses is a great value add because every dollar counts for them. Q: Is the word “efficiency” changing for industrial operators? Jeff: When you look at conditions today, both here in the United States and globally, you see so many labor shortages, droughts, inflation, and climate changes, and it’s forcing efficiency, not for efficiency’s sake, but for sustainability and survivability. Businesses have to fundamentally change the way they produce a product, and they have to find the least expensive, most efficient path to go to market. Efficiency isn’t an option anymore; it’s a necessity. Kirk: For years, everybody has wanted to do more with less, and usually, there’s some sort of limitation in the way until someone invents a solution that takes things to the next level. That’s what we’re all about at FreeWave. We’re not doing anything necessarily earth-shattering; but we are innovating. We’re providing a mechanism for our customers to become more and more operationally efficient – to increase their bottom line – and make things better, and not just for their business, but for their employees and life, in general. Case in point: oil and gas companies, considered by some to be big polluters. However, these companies have many sustainability and environmental initiatives and tenants they strive to uphold. They are a critical component of our everyday lives. They’re evolving and innovating, too. FreeWave, helps them get the most out of the equipment they have on-site so that they’re more effectively getting the oil and gas out of the ground with minimal impact. Overall, a more efficient company means less impact on the environment, and these kinds of solutions help create a better planet. Q: In your wildest imagination, where can technology take the industrial leader in the next ten years? Parthesh: There are so many great examples. In China, there’s currently a 12-story tall facility being built to raise hogs in a conditioned environment. It’s like an office space for swine. In this environment, technology is being used in such a way that human intervention is really minimized, and because most things are entirely data-driven, they are able to be a lot more efficient. Now, there are pros and cons to what’s taking place there, and we won’t know the final outcomes for a while, but the march of technology is going to continue to go on, and I believe we will continue to see a lot more practices like this in the future. Jeff: Another example is indoor growing facilities in Saudi Arabia and Qatar. Massive facilities that are purpose-built for farming simply because there is
The Impact of IoT on the Future of the Oil and Gas Industry
A global expert in telecommunication, Dennis Stipati talks about how today’s energy companies are doing more with the same amount of resources and how FreeWave sees the future for smart oil fields. A true industrial transformation is taking place as we speak. Connected devices delivering data to technicians and managers through the internet – what we all know as the Industrial Internet of Things (IIoT) – are transforming efficiency and productivity for forward-thinking energy companies. Oftentimes, wells are located many miles apart in extreme weather conditions or might even be offshore on an oil rig. Through digitalization, oil and gas leaders are implementing innovative strategies to do more with the same amount of people and resources while increasing overall safety and environmental sustainability. Here, we explore the impact of IIoT in the oil and gas sector with FreeWave’s Senior Director of Strategic Accounts, Dennis Stipati. Q: The Industrial Internet of Things (IIoT) is significantly impacting every industry; what are the top problems IIoT is solving for energy companies?? Dennis: From the operations side of things, being more efficient and increasing revenue is huge. Over the last year or two, there’s been a lot going on in our world. There’s not enough gas, not enough oil, and on top of that, we’re trying to get the oil and gas that we do have to the right places. That’s where IIoT steps in, helping us increase revenue and improve efficiency within operations. For example, if a drilling rig is down for a short period of time, that oil company could lose millions of dollars, potentially. It’s important to be able to remotely control the different sensors on that oil rig so that downtime is decreased and productivity and overall revenue is increased. That’s one benefit. On the other end, IIoT also impacts the overall safety of workers on the field and the surrounding environment. In the past, oil operators weren’t able to get the type of detailed operational information that we have access to today, and this data makes a big difference in reducing safety hazards on the field. With the right equipment in place, we can see when machine parts need to be replaced before their end of life. We can also virtually measure the amount of oil that’s coming through the pipelines and see if there are any leaks or dangerous chemical exposures before a crisis arises. IIoT also helps us control the day-to-day management of our operations from anywhere in the world, which leads to greater sustainability. Say there’s a methane leak of some sort. We can now respond to a situation like this immediately instead of after hundreds of thousands of gallons have been released into the environment. A decrease in environmental hazards means a safer and more sustainable world for all of us. At the end of the day, what IIoT really helps us create is a smarter network. With the right equipment in place, oil operators can manage changes on the field from virtually anywhere in the world, no matter if it’s a change flow, tank pressure, or even the temperature. With a smarter network, these decisions can be made on the edge. Q: How does the use of IIoT in the oil and gas industry impact the everyday person? Dennis: IIoT in oil and gas is important for a number of reasons, but the biggest thing most people pay attention to is gas prices. Whether it’s filling up their car or paying for natural or propane gas, this is an industry that affects all of us. It’s important for oil operators to be as efficient as they can so that they can make a profit and then pass along those cost savings to everyday consumers so that we can continue to do the things that make up our daily lives. Q: What FreeWave products are currently being used in the oil and gas industry? Dennis: It seems like every day, a new app is invented to help make our lives easier. I think FreeWave products function in the same way. Our IIoT solutions, including Zumlink™, ZumEdge®, Fusion™ Bridge radios along with our FreeWave Edge software platform, help our customers operate with greater efficiency and make better decisions on the edge. We currently have our products right on the drilling rigs. A lot of times, these platforms are fairly large, and they’ll have five or six radios on a drilling rig, maybe even more, that are wirelessly interconnected. Our products are also used on the pipeline to measure the flow of the natural gas going through that pipeline as well as the temperature. Some of our radios are used in the terminals to connect a tank to the back office or monitor a fracking pond to make sure there are no leaks. Honestly, I feel like every week, I learn a new way a customer uses our products. You think you know it all, and then someone else comes back and shares a different way they are using our solutions within their remote operation. Q: As you look at the future, and the role of IIoT within it, what excites you the most? Dennis: The common theme I keep seeing in technology is automation. Our population here in North America and even in Europe is decreasing. Recently, I read a report that said there are two jobs available for every person that’s looking for employment. How do we fix that? Automation. The more we use IIoT, the more we can make better decisions without human intervention. Machine learning, autonomy at the edge, and computerized systems, these things all make a big difference in the day-to-day management of our operations. I think we forget just how much more efficient and productive our lives are today because of technology. When I look at my life and think about the evolution of basic TV to streaming services or the transformation of the bag phone to the iPhone, I’m really amazed at how far we’ve come in such a
Unlocking Creativity within the Industrial Sector
Never content My friends and coworkers can attest that I live by the basic life philosophy: “never content.” I believe in pushing boundaries and resisting the status quo, both in business and leadership. As I see it, we have two options in this life: we can sit on our laurels and wait for change or take things into our own hands and innovate. Thanks to the industrial internet of things (IIoT), our opportunities for change and transformation are endless. The more willing we are to be free thinkers — expanding the territories of our respective industries, the larger the impact we’ll witness in the world around us. The key to true transformation Most people can agree that innovation is the key to success in the industrial sector. If we keep doing things the way we’ve always done them, we won’t have much of a world left in short order. My kids are now in their twenties, and quite frankly, they’re pissed at the environment the generations before them left behind. I understand their frustration; it’s no secret that we’re facing a global environmental crisis, and without positive change, things will only get worse. If we truly want to be a part of the solution, we have to think bigger. We must become free thinkers, willing to do more than what’s been done to actually see the kind of transformation we’re looking for. Today, IIoT helps us expand our thinking. We are only on the cusp of what edge computing and data analytics can do in remote areas. Data helps us make sound decisions. When you think about where our day-to-day information is generated and how it is analyzed, you can actually imagine a world where operational managers don’t have to walk the fields, manually check pressure gauges, or physically adjust pumps to gather intel. With the right technology in place, these tasks can all be automated, which means a natural skyrocket in productivity and efficiency for remote operations worldwide. This is truly exciting because it means a shift in the culture of business, environmentalism, and sustainability. When industrial leaders and remote operations managers are given more time and space to think, they can innovate on a whole new level. Where does this lead us? Straight to the intersection of modern technology and inventiveness, where we all have the opportunity to create a safer, stronger, and more innovative world. This is great news for the modern business owner because it means the opportunity to create stronger work models and a more efficient workflow, which naturally leads to greater employee retention and better cash flow. This is truly a win for all. The big picture As a whole, technology has provided extensive upgrades within the industrial sector over the last few decades, but in reality, until IIoT came around at a large scale, just within the last few years, we didn’t have the data needed to actually know or understand what was going on. Data is great, but intelligent insight into that data is even better. Now, thanks to the ever-expanding world of technology, we can analyze data intelligently and utilize it more effectively. With this type of smart equipment on the market, field workers can do things like monitor a banana plantation from formation all the way to the supermarket. Where before, we could only know that a banana was picked and on a boat to its next destination, we now have the technology and subsequent opportunities to see things, like product quality, faster and more clearly. Free thinking at an industrial level requires our willingness to try new things. It means creating and implementing out-of-the-box solutions to common problems. It means searching for new ways to perform basic tasks and habits. It means finding new solutions for life’s tried and true issues. Sure the modern farmer may be used to turning the same lever on and off every single day, but with the right technology in place, they don’t have to. Free thinking means moving beyond the status quo to see and receive a world filled with new possibilities. Over the next few years, we’re going to see billions of dollars spent on data processing and analysis solutions. The more we know, the more we can respond to real-life situations with confidence and precision. The current financial trends and predictions are important because they reveal that our world is ready for change. Now is the time to innovate. Think bigger A crucial part of our strategy at FreeWave is implementation without dictation. This means we fully empower our customers to be free thinkers within their own environments. We want you to have full control over the information you receive and how you use it. Our job is simply to make your life easier by deploying the technology you need — edge computing capabilities, wireless connectivity, sensor technology, and more to help you manage your operation from anywhere in the world. Our IIoT solutions are designed with a simple-to-use control panel (aka our single pane of glass dashboard) so that you can run your entire operation from a singular entry point. We are no strangers to the work of free-thinking here at FreeWave (it’s part of our name as well as our culture). In our own business model, we’ve had to expand our ideas and our identity as a leader in the tech space. For many years FreeWave rode its pedigree of building and selling narrowband radios without much thought toward innovation, but then, we recognized the need our customer base faced as they searched for help in understanding what IIoT could mean for their businesses. We could’ve stayed as we were and continued to do what we did best at the time, but instead, we chose to pivot and really dig into our customers’ needs and how we could best serve them. Now, our solutions include multi-radio edge computing solutions with gateways, edge data analytics and applications, and it all started with our team’s willingness to think bigger. Free
Technology Revealed: Unraveling Data Accessibility for Industrial IoT
Our world is full of endless possibilities. Thanks to modern technology, we are more digitally connected than ever before. According to Statista, there will be upwards of 30.9 billion connected internet of things (IoT) devices by 2025. From smartwatches and traffic cameras to medical sensors and security systems, the more technology in effect, the more data we are able to collect. If you’ve heard it once, you’ve heard it a hundred times: data is everywhere, and it continues to be an incredible asset for leaders across industrial environments. Today, our widespread access to data allows us to make informed and intelligent decisions based on accurate intel. Something as simple as knowing soil moisture levels or the outside temperatures helps us respond to environmental needs in strategic ways. While data accessibility is undoubtedly a positive thing, it doesn’t mean much if we don’t have the tools needed to act upon those same data insights available to us, and this is where technology makes a tremendous difference, especially for industrial leaders. When we take the revolutionary power of the industrial internet of things (IIoT) and pair it with the wide range of data metrics available, we can intentionally foster better industrial environments across the globe. Our increased access to data, paired with the modern revolution of IIoT technology, allows us to respond to real-world problems with timeliness, precision and contextual intelligence. Together, this dynamic pair fosters safer, faster and more efficient environments for all. The power of time and context When it comes to data accessibility and Industrial IoT, there are many profound revelations of impact, time being just one of them. In industrial environments, timing is everything. It’s the difference between a healthy crop and a wasted harvest for the smart farmer; it’s the difference between an uncontrolled wildfire and a self-contained outbreak for the modern firefighter; it’s even the difference in what could’ve been merely a small oil leak rather than the environmental disaster we now know as the Deepwater Horizon oil spill. Data accessibility provides us with timely information on the surrounding contexts of our environments, and with the right tools, we can respond to this information faster and more efficiently than ever before. Contextual intelligence Next in line to the value of timing, lies the power of contextual data, also known as contextual intelligence. Contextual intelligence is a game-changer for the industrial leader, as it provides a deeper level of understanding and offers an enhanced sense of accuracy for production. Think of any environmental disaster, be it a forest fire, dust storm or even a carbon monoxide leak. While IoT solutions cannot prevent these events from happening, they can provide immediate insight to these occurrences based on contextual analysis. With the right sensors in place, data is retrieved and distributed, making room for timely interception. With the proper insight, operational leaders and manufacturers can observe what’s happening in critical environments and make intelligent decisions based on the contextual data available. Today, IIoT solutions allow us to control external environments virtually anywhere in the world without laborious human intervention. In this modern age, the simple switch of a button or command from a control center can adjust the outputs of remote operations everywhere. We call it a single pane of glass approach. When emergencies arise that need immediate attention, these same IIoT solutions help us respond quickly and efficiently, ultimately maximizing people’s time more effectively. The role of intelligence In addition to time and context, the third component is intelligence. Data takes the guesswork out of problem-solving and invites us to respond with precision-based strategies. Think about smart farmers, for example. With proper insight into the correct data like soil moisture levels, external temperatures, climate measurements and other relevant intel, these farmers can cultivate the most favorable conditions for a quality harvest. Without this information, farming becomes a guessing game that varies from year to year, but when this data is paired with IIoT solutions, agriculture becomes much more about intelligent strategy. Looking ahead, the digitization of farming is quickly becoming a necessary solution. Our world population is rapidly increasing every day, leading us to grow by 2 billion people in the next 30 years alone! A significant increase in people requires a significant need for accelerated food production. In fact, it’s reported that we will need to increase crop yields and harvest more food in the next 30 years than we’ve had to produce for the last 10,000 years combined. Though these statistics are extreme, they don’t have to be alarming because with the right technology in place, society will be up for the task at hand. The interconnected work of data and IIoT takes smart farming to a whole new level, making it less of a gamble and more of a controllable process from seed to harvest. Beyond the world of just smart agriculture, data impacts the role and work of IIoT solutions across every industry, including water and wastewater, electricity, oil and gas, transportation and traffic and many others. Our ability to access data empowers us to leverage IIoT technology most intelligently; it’s the “work smarter, not harder” mindset at its finest. Technological pioneers At FreeWave Technologies, we are passionate about creating real-world solutions for everyday needs across industries. In a world that is changing with rapid succession, connectivity is critically important for industry leaders, remote operations and the basic good of society. We need tools and products that help us act on data quickly and precisely, and our line of products is helping our customers do just that. FreeWave products take the complexity of industrial IoT applications and simplify them for the user, creating a digitization strategy that connects data with life. Our easy-to-use applications allow controllers to respond to their deployed assets from one place with timeliness, intelligence and precision. At FreeWave, we are pioneering a new way forward, promoting connection, safety and innovation along the way. The world is evolving rapidly and shows no signs of stopping, so we are taking each
The Unlikely Marriage of Sustainability and IIoT
When I think about technology’s impact on sustainability, I think about home. I live in California, and earlier this year there was a fire in my area which, unfortunately, destroyed a lot of houses and affected many families. Luckily, because my city deployed industrial internet of things (IIoT) solutions for fire protection services, they were able to detect this fire early on and prevent further damage in the area. In this scenario, IIoT solutions provided timely insights which allowed the appropriate resources to respond faster, creating a better and safer future for my community. The unlikely pair Sustainability is a widespread conversation these days, and for good reason – a more environmentally conscious world equals better quality of life for us all. As such, electric cars are on the rise, paper straws are everywhere and many companies are doing their part to minimize their carbon footprint. As a collective, we are making great strides in our attempt to create more eco-friendly communities. Amidst our best efforts, however, many may not realize the positive and profound role modern technology, specifically IIoT, can have on our journey towards a greener society. This may come as a surprise, but now more than ever, IIoT is playing a key role in realizing our sustainability goals. Real-world change Today, IIoT technology is completely enhancing our approach to transformative environmental practices by providing the power of response. By implementing IIoT into our data, we can do much more than just monitor data; we can actually respond to data by pulling trends, sending out alerts, leveraging artificial intelligence and so much more. IIoT allows us to take data-driven action, and this is ultimately having a significant impact on the environment and entire industries across the globe. Industry-wide impact In 2015, The United Nations Member States all adopted the 2030 Agenda for Sustainable Development. This global partnership calls countries into action to create a stronger planet by implementing eco-friendly strategic practices to achieve 17 different Sustainable Development Goals (SDGs). Technology plays a significant role in realizing these SDGs. In fact, there are a variety of industries becoming more sustainable because of IIoT. Let’s look at energy, for example. Recently, the energy space began implementing environmental and social governance (ESG) criteria. Now, different organizations can receive access to various federal funds depending on their ability to meet ESG standards. Without the use of IIoT practices, procedures and functions, these organizations could not make the improvements needed to contribute to their environmental goals. With the use of IIoT, these same companies can effectively monitor and manage environmental assets through automated procedures that contribute to more efficient industries and remote work environments across the board. Ultimately, IIoT technology offers the insight and practical solutions needed for these companies to create positive structural changes. The benefits don’t stop there. We’ve all heard or read that our water supply is endangered, and this is not just a California issue, like many assume; it’s a widespread problem that needs immediate attention. The rapid rate of water decrease is not just a byproduct of human consumption, it is also a direct result of everyday processes, industrialization and the ever-changing climate. Today, IIoT products are providing simple solutions to monitor timely data metrics like rainfall rate and water consumption. These solutions respond to water shortages and water waste in innovative ways. Through IIoT, we now have the ability to adjust and adapt our behaviors based on data visualizations, and throughout the process, greater sustainability is achieved worldwide. The IIoT difference on finite resources With sustainability, the goal is really to manage the lifespan of an existing asset, be it drinking water, livestock, oil and gas, the list goes on, and with IIoT technology, we can better control our ability to manage these assets. While the desire to be more sustainable is not new, there have always been technical and cost limitations, but now, IIoT provides practical and cost-effective opportunities for change. At FreeWave Technologies, we’re committed to improving life’s essentials through Industrial IoT solutions. Our full line of connected IIoT network solutions bring most needed data to operations teams wherever they are and our ready-to-deploy solutions play a significant role in environmental monitoring ultimately leading to safer and more sustainable communities. When it comes to Environmental IoT™ we are spearheading a new way forward, offering solution-based products that empower industrial leaders to manage their assets simply and intentionally. Our single pane of glass dashboard creates a singular view for our customer, allowing them to track, control and respond to timely data metrics in one place instead of multiple dashboards across applications. Products that solve problems are important, and that’s exactly what we’re providing at FreeWave. We’re shifting the culture of sustainability from altruism to action, and it’s making a substantial difference. At the end of the day, I care about the world that I’m leaving for the next generation. Every day I think about my two children and the world they’ll grow up in; I want to do my best to create a place where they can thrive, and I’m excited to be a part of an organization that is achieving just that.
Technology’s Impact on Air Quality Control Monitoring
At this very moment, wildfire season is currently underway in North America, and since the start of this year alone, more than 27,000 wildfires have consumed nearly two million acres according to the National Interagency Fire Center (www.nifc.gov). Though many people hear the word “wildfire” and immediately picture a forest in California, the reality is these natural disasters are prevalent across the country. Wildfires are everywhere The Verge, a technology news website, announced recently that roughly 56% of homeowners in the United States face some sort of wildfire risk in the upcoming decades. Bottom line: wildfires are becoming more prevalent and costly every day, and these fires are affecting more than half the population and significantly changing our quality of life. Just a few decades ago, we didn’t have the technology to prevent or predict changes in the surrounding air quality, but now we do, and through it, we can create a better world. Today’s technological advancements allow us to be proactive rather than reactive when it comes to our overall health and safety. By leveraging sensor technology, we have a better chance of predicting and preventing significant changes in the environment, like a drastic shift in air quality before a wildfire begins. This insight allows us to make better decisions based on intentional insights, and our increased access to data provides us with the right information to better control our surrounding environments. Technology is powerful, and this power can and should be used to our advantage. One of my favorite ways to witness the power of technology transforming real-world issues is by exploring the ways sensor technology has a tremendous impact on air quality control monitoring. Today, internet of things (IoT) technology and satellite are the best tools for early detection and prevention of wildfires. Our approach to air quality control Believe it or not, air quality has as much impact on the world as the daily temperature. With climate change causing drastic shifts in the environment, it’s important that we pay close attention to the quality of the air we breathe, as it affects our overall quality of life. As you know, trees play a critical role in our ecosystem, so we must be very intentional and proactive about protecting the forests around us. This is where sensor technology makes a big difference. With a small machine, we can now track and predict changes in the environment and our surrounding air quality, which ultimately helps us control, prevent and predict conditions that lead to wildfires. At FreeWave, we provide autonomous sensors that are strategically placed in remote locations to track and record relevant data metrics such as temperature, humidity, wind, direction and particulate matter. These readings help industry experts know what’s in the air and how the air is changing. Once this data is collected and transmitted to the cloud, we are then able to analyze it and provide alert and proactive responses where needed. We have created a single pane of glass approach, where anyone with access can log into a portal and see in real-time what is happening in the areas surrounding their deployed sensors. The interesting thing about our sensors is that they are fully powered by solar energy, and satellite signals transmit the recorded data. We are basically offering a “buy, install and forget” resource that makes life significantly easier for industry and environmental experts. There is a ton of value here. Not only are we taking an in-depth look at what’s going on in the environment through air quality control monitoring, but we are also taking that information and transforming it into action. The real gold here lies in the return on investment. A little money spent on these sensors upfront can ultimately save millions of dollars, lives and entire forest regions in the long run. Today, IoT technology allows us to prevent and control wildfires before they occur, and early fire detection leads to safer environments for us all. A unique human aid We are making life simpler and safer for all by using technology to do what humans can’t. Back in the day, people had to sit in an operation tower for hours, looking out to catch any major changes in the environment. Today, there is a major shortage of people willing to do this kind of work, and can you blame them? As humans, we can only be in one place at a time doing one thing at a time, but with technology, this is not the case. With simple sensors, we can now monitor and control a lot more environments at a much more affordable rate. All this to say, the goal here is not to replace humans with technology as some might think; what we are really doing is enhancing human ability through the power of technology. I’ve worked in technology for over 30 years, and every day I witness its evolution. I know it’s hard to imagine a world without cell phones, but I can still clearly recall the days when cell phones took up the entire trunk of a car, and now look at the world, most of us carry the same ubiquitous smartphone in our pockets. Technology is amazing, and we have the opportunity to use it to our advantage. At FreeWave, we are taking the capabilities of mobility – LTE, 4G, Satellite, Wi-Fi, Bluetooth, 900 MHz– and marrying them with sensors. The data we gain from these sensors is saving us time, money and resources. At the end of the day, we’re taking away the need to “overthink” industry issues, like how to better prevent forest fires, and instead are replacing our questions with data-informed predictions and timely proactive responses. Every day, we strive to provide industry leaders with the tools and technology needed to spearhead faster and safer environments for us all. This is certainly not a boring business, and I thoroughly enjoy working for a company that is using technology to have an impact on the things that matter most.