5 Reasons Why Your IIoT Network Needs Wireless Programmability

If your company is grappling with the shift towards wireless connectivity and automation, you’re certainly not alone. As more processes are automated, especially within industrial markets like oil and gas or utilities, data has become a valuable asset that provides critical information for operations and performance. Up and coming industry leaders are pushing for modern Industrial IoT (IIoT) networks, as the older, more traditional workforce heads towards retirement. As a result, the processes of yesterday are being phased out – especially when it comes to choosing between hardwire and wireless for remote deployments. For many, wireless solutions have been accepted for some time as the primary means in which data is collected, transported and analyzed. Frequency Hopping Spread Spectrum (FHSS)-based technology in particular is proven to be a reliable and maintainable wireless option. Now, however, we are facing an entirely new realm of opportunity with FHSS-based programmable wireless technology that is molding the future of data collection. Here are five reasons why you need to consider programmable wireless technology for your IIoT network: Bring it all to the Cloud – Programmable wireless solutions are equipped with the ability to incorporate custom, third party applications at the Edge. When we talk about the Edge, we essentially mean the outermost layer of the network. For industrial networks, the Edge is often a remote area where mission critical operations occur. In order for the business to capture a holistic view of their entire network, many have added sensors and other data-capturing devices at the Edge. By adding third party applications with new programmable wireless technology, businesses are able to expand automation capabilities, reduces costs, simplify operations and enable data transmission directly to a private or public cloud. Smart Data Over Big Data – The goal of achieving ‘Big Data’ is common practice in most modern IoT and IIoT networks. Decision makers recognize the power of data and know they need to receive it from every network end-point. We’ve seen this to be true purely in the proliferation of sensors and IoT devices deployed across the U.S. that continues to grow. Having programmability at the edge of the network offers a big advantage, because you have the ability to control of the quality of the data. Even better than Big Data is access to the specific, timely data that is most pertinent to your business operations. Robust and Reliable Technology: Programmable wireless solutions are equipped to embrace the future of data collection. The beautiful thing about these solutions is that the backbone of the technology is FHSS. This particular Radio Frequency (RF) technology has been proven in some of the most adverse conditions imaginable. These technologies are trusted by the government to maintain their links and have proven to operate in some of the most dreadful and intense environments in the world . Where performance is critical – these solutions have proven to work for decades and now programmable options can reliably bring this data directly to the cloud. Flexible and customizable– We are all privy to the fact that no two networks are the same. With programmable options, radio functionality is customizable to the specific needs of the network. Despite the variances, remote networks likely have one thing in common – data needs to be transported across significant distances. Programmable wireless technology is built to be deployed at nearly any point in the network where sensors are collecting data. This is an area in which traditional hardwire solutions almost always fall short, as most businesses cannot afford the cost of running hardwire to these remotes sites. Besides, there are wireless options that are built for easy installation and long-range communications that simply make the most sense for remote deployments.  Meeting Modern Demands– Today, IT and OT departments are one in the same. These modern networks eliminate barriers which is conceptually great for operations. However, like any major disruption, convergence has created a number of challenges from visibility, to cultural difference, to security. To ease some of these tensions, modern wireless solutions are designed to drive connectivity for the entire network, and are even able to tie in legacy systems from the field. Many FHSS-based technologies offer secure-data transmission, and by leveraging the programmable wireless technology, and you can bring data to the cloud. Wireless technology is recognized as a necessary solution for remote operations. As IIoT networks mature, there are stark advantages in leveraging programmable solutions. Not only do they rack up cost savings and streamline operations, but they are deployed at the edge of the network with minimal hassle and are built to deliver in any environment.

Remote Tank Level Monitoring and Automation

Industrial livestock operations have several critical needs in order to function smoothly, but perhaps most important is also the most fundamental: water. On remote sites, tank level monitoring and automation are tools that can essentially make or break the entire operation. In many of these situations, the needs of the site managers are different, so in order to maximize the technology being deployed to drive the automation process, they need to be able to customize the functionality. For operations using radio communication networks, those radios need to provide maximum programmability in order to host third party applications specific to the needs of the site managers. We recently finished a deployment that serves as an excellent case study for remote site tank monitoring deployments and included some interesting uses of radio programmability: The operator of a Rocky Mountain based livestock facility approached FreeWave to assist in remote data visualization of water tanks that are vital to its operations. The pain point was that the tank levels could only be observed visually on premise. After consideration of the terrain (mountainous, remote and big temperature swings), sensors and communications infrastructure, FreeWave engineers recommended ZumLink IPR with the Node-RED programming language for intelligent tank data visualization via browser or mobile device. The facility has minimal to zero staff most of the time. If a fault occurs such as a leak that prevents a tank from filling, the facility operators are unaware until they visually inspect the remote faulty tank, located a half mile from property headquarters. The operators wanted to reduce the number of trips to the tank facility and remotely monitor all tanks via web-based browser or mobile device. For the complete case study, visit this link: https://www.freewave.com/case-studies/remote-tank-monitoring-automation/.

Do Drones Help or Hurt Wildfire Fighting?

Summer wildfire season is in full swing across North America, and the question of the utility of drones is once again in the headlines. The technology has proponents on both sides, but it has also been linked to several incidents, including the grounding of critical aircraft in a firefighting effort in Arizona. A key point of differentiation in this discussion is the use of personal drones, similar to the one mentioned in the article above, and commercial drones designed to serve a specific purpose in operations, similar to military or first responder deployments. The problem that firefighters face is the unauthorized use of personal drones, which can create dangerous situations for support aircraft like helicopters and tanker planes. Because firefighting aircraft fly at such low altitudes, they share the same airspace as commercial or personal drones, and at that altitude, one instance of interference can be deadly. A recent Quartz article pointed out the correlation between drone interference and the effect it can have on the people most impacted: civilians and the firefighters themselves: The drone problem has plagued fire departments for the last few years; In 2016, during Utah’s massive Saddle fire, a drone prevented firefighting planes from taking off—if the planes had been able to attack the fire from above, people would not have needed to be evacuated, according to Utah governor Gary Herbert. So far, in 2017, there have been 17 incidents of unauthorized drone disturbance in wildfire areas. In 2016, 40 such occurrences were recorded. In Colorado, firefighting crews are figuring out the most effective ways to use authorized unmanned aerial systems (UAS) to aid fire suppression tactics. When used in an official capacity, drones can be extremely useful. They can be used to survey landscape during a lightning storm when manned aircraft are grounded, or they can be used to deliver supplies to ground crews working in remote areas. Further, with new infrared technology, drones can be used to essentially automate the response protocol process to identify fires with the greatest threat potential, and dispatch the necessary resources before the fires explode out of control. Other leading-edge UAS applications for firefighters include drones that can be pre-programmed with Google Maps flight plans prior to launch, or drones that can stay in the air for hours with greater line-of-sight communications than ever before. The true difference between unauthorized and authorized UAS in wildfire fighting situations is the communication capabilities. When deployed correctly, authorized UAS can use TDMA technology to communicate with other aircraft in the area and ensure that no collisions or interference incidents occur. TDMA is a frequency channel access technique for shared communication networks, essentially enabling a more sophisticated way to drive Point-to-Multipoint communications. It allows multiple transceivers to access and share a single radio frequency channel without interference by dividing the signal into different transmission time slots. This enables swarming applications that enable multiple unmanned systems to operate autonomously, in tandem. For many personal drone users, the temptation to use this emerging technology to capture images or video is strong. Better cameras, greater operating distances and stronger communication capabilities have created a tool that can be both fun and useful for the average user. However, for wildland firefighters, the use of these unauthorized drones pose a serious threat to both their safety and the safety of the civilians they are tasked with protecting.

The Importance of Frequency Hopping

(Original blog can be found on the Texas Instruments website) Are you a fan of those 1940s black-and-white movies where a damsel in distress gets rescued by a rough-and-ready private eye? If so, then you’ve probably seen actress Hedy Lamarr. In real life, Hedy was no damsel in distress. She was one of the primary inventors of frequency hopping technology now seen in Wi-Fi®, Bluetooth® and code-division multiple access (CDMA). The technology Hedy Lamarr helped invent is frequency-hopping spread-spectrum (FHSS) radio technology. FHSS is a wireless technology that spreads signals over rapidly changing frequencies. Each available frequency band is divided into subfrequencies. Signals rapidly change, or “hop,” among these subfrequency bands in a pre-determined order. Used in global industrial applications for over 60 years, 900MHz FHSS radios equipped with TI’s chipsets like the SimpleLink™ Sub-1 GHz CC1310 wireless microcontroller (MCU) now have the ability to host process-automation apps for the intelligent command and control of remote sensors and devices. Without having to leverage expensive Wi-Fi bandwidth, lay fiber or employ cost-prohibitive cellular, companies can now take advantage of proven low-power FHSS technology to automate processes at the network edge. The proliferation of smart sensors and high-bandwidth devices makes low-power FHSS technology a viable and cybersecure wireless data option for oil and gas, unmanned systems (like unmanned aerial vehicles [UAVs] and robots) and original equipment manufacturer (OEM) wireless integration. Because innovators like TI have developed such powerful chips, FHSS is no longer restricted to pure telemetry or input/output (I/O). Indeed, FHSS increasingly supports voice and video, and can scale to form self-healing mesh networks. Moreover, FHSS transmits data over much longer distances than Wi-Fi, Bluetooth, LoRa or zigbee – up to 60 miles in some cases. Because FHSS is a wireless technology that spreads its signal over rapidly hopping radio frequencies, it is highly resistant to interference and is difficult to intercept. Interference at a specific frequency only affects the transmission during that extremely short interval, making FHSS inherently cybersecure. By employing intelligent TI-based FHSS technology, organizations can take advantage of real-world fog computing and intelligent edge communication devices that are cybersecure and resilient. When deployed as process-automation nodes, these devices (pictured in Figure 1) can make decisions and take action at the access level (or at the sensor or device). Indeed, not only is FHSS a reliable and robust option for Internet of Things (IoT) networks, it is also a low capex and opex solution that can work for years without maintenance. Contact FreeWave to learn more about FHSS technology and order a couple of TI-powered radios that you can program (in Python, Node-RED and Node.js) for real-world fog and edge applications. Also, find out more information about the CC1310 wireless MCU and other products within the SimpleLink MCU platform.

Rugged IIoT Solutions That Can Weather Any Storm

Mount Washington Observatory (MWO) is a research facility located at the heart of what many consider the “home of the world’s worst weather.” Think thick ice, dense fog, drifting snow, powerful winds, sub-arctic temperatures, rapidly changing conditions and more fog. The New Hampshire-based facility provides critical research data on the Earth’s climate and doubles to protect the lives of the MWO crew, US Forest Service Snow Rangers and New Hampshire Fish and Game employees by providing real-time weather updates. Collecting data is critically important for MWO operations and the safety of those it helps protect. In this vicious and unforgiving environment, FreeWave’s rugged IIoT solutions are responsible for delivering the data that is invaluable to research and safety efforts. Powering through Fog and Ice The extreme conditions at the MWO facility range from fog with 50-100 mph winds to sub-arctic temperatures that are accompanied by 140+mph winds and thick ice. The weather is known to change frequently and fast, with ice accretion rates of up to 12” per hour — and visibility is often limited or non-existent. These extremes make it the ideal location for studying the environment and climate. However, when search and rescue teams are deployed the situation can quickly become dangerous. They rely on MWO’s real-time data to assess conditions. As you can imagine, there is little room for connectivity issues when people are out in the elements. Ruggedized IIoT Solutions The key to establishing a network at Mount Washington is robust and hardened technology that will perform in the Summer and Winter extremes. For more than 13 years, FreeWave 900MHz spread spectrum radios have delivered the data that the crew relies on to survive some of the most intense weather in North America.  While the technology is constantly exposed to the rough conditions, it performs day-in and day-out, providing critical data around the clock. Check out the full case study, including a description of the network here: https://www.freewave.com/mount-washington-observatory/  

Manufacturing in the Age of IIoT

Few industries can claim such a foundational impact on the United States as the manufacturing industry. Modern manufacturing began with the birth of the assembly line and the transformational effect it had on the automobile industry. Companies then adopted that approach to product manufacturing and logistics. The early phases of the next generation of manufacturing appeared as machine-to-machine (M2M) communication, a forbearer of the concept behind the Internet of Things (IoT). Eventually, IoT became so broad that specific designations were needed to differentiate between the consumer and industrial side of things, thus paving the way for the Industrial IoT (IIoT). Today, manufacturing companies, while often on the leading edge of automation technology, are still scrambling to adapt to the explosion of sensors, communication platforms, big data and high-speed analytics to maximize efficiency and future-proof their products or designs. Some companies are touting the idea of retrofitting – a concept that has existed for some time – but some plant engineers may be wary of the need for continual updating to a system that is bound to become irrelevant at some point. Still, the process can be relatively painless, and is quickly becoming necessary, as Plant Magazine notes: … Most food manufacturing and processing plants have motors powering essential equipment such as mixers, conveyors and packaging machines. But they’re just motors. They don’t play in the same league as other intelligent devices. With years of service to go, it’s difficult for plant managers to justify replacing motors that work just to make an upgrade with smart features. But motors can connect to the IIoT without a complete overhaul. Instead of investing in new, more intelligent/smart equipment, consider investing in sensors that provide similar functionality to connected devices. Smart sensors attach to almost any standard low-voltage induction motor. Sensor technology is sophisticated enough to be small, functional and energy efficient. For certain kinds of manufacturing plants, a complete overhaul may not be necessary, and a ‘simple’ retrofitting process might easily solve the first part of the problem. The second part of the problem, or challenge, is that along with smart hardware, plants also need the software and data processing capabilities to keep pace. Some plant engineers are solving these challenges by deploying programmable radios capable of hosting third-party applications so that the data can be transmitted in smaller, highly specific packets, making the transport both fast and easier to push into predictive analytics platforms. From there, software companies are building in the ability to process data in the cloud, essentially running all critical data and software operations through either a fog or cloud computing process. Cloud software services have the potential to be highly customizable based on the needs of the manufacturing plant. These technologies are good examples of the ongoing convergence between traditional information technology (IT) and operations technology (OT) needs in industrial markets. Currently, the manufacturing industry is sitting in an interesting spot: leaders in the M2M world, but still adapting to the IoT world. Where the industry ends up in the next 10 years could be a strong indicator of the economic and financial temperature of the domestic and international marketplaces.

International IIoT Perspectives: Smart Cities

The Industrial Internet of Things (IIoT) is, at times, hard to pin down. The stronger the technology has gotten, the broader the applications have become, affecting everything from energy, to smart cities to manufacturing, and in the process, blurring the line between traditional consumer and industrial markets. Interestingly, in the United States, much of the Industrial IoT advancements have come from the private sector – oil and gas, utilities, precision agriculture, etc. International IIoT, however, has seen real advancements coming from cities – smart cities, that is. Smartest Cities in the World A 2015 article from Forbes provided a list of the top five smartest cities in the world based on a number of factors, including environmental monitoring, smart traffic management, data usage and creative tech applications.  Barcelona topped the list, with New York City, London, Nice (France), and Singapore rounding out the top five. In each instance, the use of smart technology improved quality of life, efficiency, and better overall functionality. Of course, there are myriad factors to consider when evaluating a city’s “smartness,” but considering how many moving parts – literally and figuratively – that it takes to create a smart infrastructure, the breadth of application is impressive. Barcelona’s comprehensive wired network drives an infrastructure that is constantly aggregating, transmitting and analyzing data for all kinds of things: The boxes are no regular electricity meters. They are fine-tuned computer systems, capable of measuring noise, traffic, pollution, crowds, even the number of selfies posted from the street. They are the future of Barcelona, and in some sense they are the future for all of us too. The hard drives are just one piece of what is “unusual” on this street, in fact. Cast your eyes down, and you might spot the digital chips plugged into garbage containers, or the soda-can-size sensors rammed into the asphalt under the parking spaces. The paragraph above not only highlights the often hidden aspects of smart cities – sensors, hard drives, boxes – but also the sheer magnitude of the data being collected from wherever possible. The technology that powers that data collection lies in the actual communication networks, which are powered by an array of RF, cellular and WiFi connections. Today, many of the devices that are responsible for collecting the data from the source – the access layer – are capable of hosting third-party, proprietary applications that can filter and transmit data in specific packages, turning Big Data into Smart Data. Lately, London has focused on green energy and environmental progress. The city launched an initiative to become a zero-emission city by 2050 with a combination of electric vehicles and public transportation. Sounds familiar, right? The actual mechanisms driving that initiative are not necessarily ground breaking: reduce combustion engines on the road, encourage people to use public transport. However, the technology has finally started to catch up. With smart traffic monitoring capabilities, public transportation can run more efficiently, keeping to strict schedules. Additionally, driverless vehicles can perhaps help lead a transportation infrastructure devoid of human-caused accidents, opening the road systems and, again, leading to greater efficiency. Smart Cities, Smart World Of course, the two examples above come at a high level. There are significant technologies driving the actual implementation of smart city devices, but the key factor is that the leaders of the respective cities understand the need for a stronger, smarter infrastructure. Many other cities are catching up – India often pops up with smart city initiatives, which is a fascinating case study based on the economic disparity of the country. Still, the drivers of the international IIoT goals often point to the development of smart cities as an ideal outcome based on the continued growth of connected technology.

Robotics on the Battlefield

We’ve all seen those futuristic Sci-Fi movies where man and machine fight alongside each other in the throes of battle. While that might have seemed far fetched years ago, the reality is that robotics are increasingly becoming a part of our military today. In fact, the Pentagon recently requested prototypes of combined human-robot squads. As the robotics industry becomes increasingly important to military officials, technology providers are working hard to develop solutions that will support increasingly automated military efforts. A recent report estimates that robotics in the military will grow at a CAGR of 9.5 percent between now and 2023. According to the same report, robotics will be most used by the military in Europe during this time frame, followed by North America. The U.S. military continues to test out the possibilities for leveraging robots to protect soldiers, increase visibility in combat situations and generally streamline operations. Not only are these robotic applications groundbreaking — but they’re also really cool.  News stories on new robotic technology boast of robotic ships, heavily armed unmanned ground vehicles, and robotic tanks – with more innovative technology coming out all the time. For example, there is a robotic insect called the “RoboBee” which was created for crop pollination and disaster relief efforts, but could also potentially lead to robotic insects used for military purposes as the true “fly on the wall” concept — equipped with audio and visual capabilities. There are also recent reports around the push for robots designed to carry wounded soldiers out of battle instead of forcing medics to enter live combat zones. These robotics may also support troops behind enemy lines in a variety of other ways to prevent risking more lives, such as dropping medical supplies to soldiers in dangerous areas. Future technologies may have the power to deliver specific medicine and even blood to wounded soldiers. While there are robotic models being tested and deployed around the world, perhaps the most uncertainty lies in the data. A Data Disaster? As recently reported in Popular Mechanics, the robotics of tomorrow may be facing a serious data problem. The article notes that for one, robots are both consumers and creators of data. Technology needs to be able to sustain the sheer amount of data required for robotic operations. The article also highlights the importance of collecting and using the right data instead of ALL the data. The good news — thanks to the Industrial Internet of Things (IIoT) — is that modern technology is becoming more favorable for managing data and it will further be supported by secure command and control (C2) links. Wireless data communications solutions are available that enable reliable C2 links have been trusted by the government and defense industry for decades. Not only are they proven in combat, but they are applicable for today’s complex data-centric systems, including robotics.  With appropriate security measures and encryption capabilities in place, C2 links can be better protected to thwart malicious attacks on these automated systems – a critical function when the C2 links enable operations of the device. Further, when frequency-hopping techniques are used there is an additional layer of security, as these types of devices leverage coordinated, rapid changes in radio frequencies that naturally avoid interference. When FHSS technologies are combined with FIPS and AES security standards, as well as multiple user-defined cryptography keys (up to 32), they are equipped with a highly robust link that is well suited for military and combat operations. While robotics brings concerns to the data conversation, technology providers are working to keep up with modern data needs. With a secure C2 link, technology is further hardened for combat applications. It will be interesting to see the developments in robotics for the military in the next couple of years. What are some of the most interesting robotics applications you’ve seen?  

7 Tips for OEMs to Improve SCADA Networking Communications

From remote field sensors to Supervisory Control and Data Acquisition (SCADA) and I/O modules, industrial wireless radios connect your device and sensor ecosystems with robust and reliable links. Furthermore, wireless data radio networking technology connected to I/O modules for SCADA applications have become faster, smarter and their firmware now easier to upgrade. More options and frequencies, including 2.4 GHz for short range I/O and 900MHz for long range data networking, continue to improve SCADA-based network communications for robotics, industrial automation, unmanned systems and heavy machinery. So what do Original Equipment Manufacturers (OEMs) need to know when deciding upon which technology to use? Below are seven tips for OEMs to consider when reviewing industrial wireless communication options.       1) Assess Technology Options for the SCADA Network Start first by identifying your needs, goals, and limitations. When it’s time to research technology options, observe what’s available today and what’s going to be available in the future, heeding the “buyer beware” saying. Communication products vary in many ways, and each manufacturer and/or technology has advantages and disadvantages. No single product—and likely not a single manufacturer—can meet all application needs. 2) Reduce Costs While some companies seek to continue to preserve existing investments of wired and wireless technologies, wireless options have clear advantages for SCADA systems. Most obviously, wireless installations reduce labor and material costs by avoiding hard-wiring remote assets. Speed of deployment adds savings. Wired systems can take days or weeks to be properly installed. Wireless networks generally require only the end points to be installed, saving substantial time and costs. Networks need to scale gracefully as the number of end points increases. After installation savings, scalability is the biggest advantage of wireless over hard-wiring, including slow integration into wired systems as it’s implemented. 3) Consider Hybrid Benefits Toss out any old perceptions. If you need mobile SCADA network access, find somebody that offers it. If you have a microwave tower place, use it. Piggyback slower licensed radio networks with faster 902-928 MHz frequency hopping, AES encrypted networks. Know that you can install I/O capable radios (analog and digital signal, 4 to 20 and 1 to 5) to relay contact closures or other data without adding a new Progammable Logic Controllder (PLC) or Remote Terminal Unit (RTU). 4) Maximize SCADA System Value With telemetry technologies, such as spread spectrum radios, the same radio used in RTUs can act as a slave device sending data back to the SCADA host, and as a repeater to other field devices or other RTUs. This allows almost limitless network expansion by using remote sites as a series of repeaters, and by using radios in the RTUs to poll the instrumentation. Polling the instrumentation creates a second network reporting wirelessly back to the RTU. This shorthaul network is the equivalent of a local area network (LAN). 5) Don’t Use a Proprietary SCADA System By using a non-proprietary SCADA system, users gain real-time access, control, and monitoring of their network (including all the devices and functions of their network). They can manage requirements of an ever-growing system allowing them to manage their network in real-time with fewer bodies and hours invested. Security and safety improves with better monitoring. For instance, some industrial systems don’t contain a process for monitoring the cathodic integrity for corrosion (like in water/wastewater and oil and gas) to avoid disaster. But with deployment of a wireless system, they can. They can begin by monitoring simple things, such as pump stations at wells, using I/O radios communicating back to the central SCADA system to get up-to-date information on the tanks’ or pipelines’ status. End users can more quickly resolve an emergency wirelessly, instead of manually. 6) Seek SCADA System Flexibility Advanced flexibility of radio communications offers benefits to new SCADA system deployments and upgrades performance of existing SCADA systems. For example, in water/wastewater industrial applications, there need to be generation/distribution, lift stations, system monitoring, and treatment facility systems in place (or planned) to meet the expanding growth of a community’s population and/or service areas to meet future requirements. Each year, many industries deploy more frequency hopping spread spectrum (FHSS) SCADA solutions to help monitor and manage critical infrastructure. Several manufacturers (including FreeWave Technologies) offer FHSS radios capable of retrieving data from remote locations. And although wireless IO (input/output) has been available, only recently have both capabilities been offered in one communication solution. 7) Seek Easy-to-Use SCADA Software OEMs implementing and using a SCADA network systems for data communications want a simplified, rapid setup and easy management of a network. That includes ability to manage multiple frequencies and multiple networks within one system. A centralized storage and management center provides easy access to system configuration and diagnostics data. Technicians in remote or harsh weather environments need robust reporting capabilities. Software like FreeWave’s ToolSuite can manage data communication diagnostics and configuration.

IIoT News Headlines: Trains, Agriculture, Underwater and More

IIoT News Trains

Industries around the world are being transformed by the Industrial IoT. We recently shared a blog with a report that estimates IIoT will experience explosive growth and approach one trillion dollars by 2025. From trains and under water applications, to agriculture, we are already seeing IIoT expand its reach today. However, we continue to see security as one of the biggest challenges – which continues to top news headlines. Below are some of the recent IIoT stories that have caught our attention: How Siemens Is Using Big Data And IoT To Build The Internet Of Trains By: @BernardMarr | Published on: @Forbes  “Siemens AG is one of the world’s largest providers of railway infrastructure, serving rail operators in over 60 countries. Through harnessing Big Data, sensors and predictive analytics they say they can now guarantee their customers close to 100% reliabilit It calls this the “Internet of Trains” – the on-rails segment of the wider ‘Internet of Things’ concept which describes how everyday objects of all shapes and sizes can now be connected together online and given the ability to communicate and capture data for analytic purposes.” Agriculture Is The No. 1 Opportunity For African Internet Of Things, Security The No. 1 Challenge  By Tom Jackson | Published on: @AFKInsider “Agriculture, Africa’s largest economic sector, is likely to be central to the growth of IoT. There are many examples around the world where value can be unlocked from enhanced efficiencies along the value chain. Mining, oil and gas, telecommunications and manufacturing will have to adopt IoT to improve efficiencies.”   The Internet of Underwater Things Published on: @NauticExpo_eMag “The development of an Internet of Underwater Things (IoUT), transmitting data throughout the ocean could make possible a system of roaming, autonomous vehicles and underwater sensors, all communicating with each other and relaying information to networks above the surface. This could be used for a wide range of submarine tasks, from pipeline repair and shipwreck surveys to seismic detection and ecological monitoring.”  IIoT and The Cyberthreat: The Perfect Storm of Risk By: @ChrisGrove_Geek | Published on: @MBTwebsite “Many of these newfound risks did not previously exist, mostly due to the lack of interconnectivity and the network ‘air-gap’ — which has become a thing of the past. As industrial organizations race to keep up with advances in manufacturing technologies, IT is increasingly encroaching into the OT world. It’s no longer uncommon to find IT technologies like Ethernet, Wi-Fi, the Cloud and cybersecurity products like virus scanners, firewalls, Intrusion Detection/Prevention Systems and Security Information/Event Management (SIEM) products being managed outside the purview of IT.”   It will be interesting to see how the IIoT continues to transform industries. What are some of the interesting use cases you are seeing as the IIoT growes? What are your biggest security concerns when it comes to IIoT?  

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.

Did you find what you were looking for?

Please let us know if you didn’t find what you were looking for so we can help make the site better for you.