Know Before You Buy: How to Find Secure IoT Devices
As the number of IoT devices skyrockets, we are seeing the amazing powers of connected networks. Businesses are able to transform as they approach operations with smart, informed decisions. In the industrial sectors, IT decision makers have visibility into the OT networks and are now able to execute logic locally at the edge devices and transport critical data globally – enabling intelligent command and control of the network. We are starting to see glimpses of a connected world we never knew possible just a few years ago. As adoption of IoT rapidly expands, the Achilles Heel of these devices continues to be security – at least in the minds of end-users and consumers. A Recent report circulating around IoT news outlets states that 90 percent of consumers lack confidence in the security of IoT devices. Yet more than half of these consumers own one or more IoT devices. The report, based on a survey conducted by Gemalto, revealed other concerning and somewhat astonishing statistics that have been reported in recent articles, including: 60 percent of respondents say their main fear is hackers taking control of their devices. 54 percent are concerned about personal information being accessed. 54 percent of the consumers surveyed said they own an IoT device but only 14 percent said they knew enough about how to protect it. Only 11 percent of manufacturers and service providers total IoT budget is spent on securing devices. Two thirds of organizations use encryption as their main means of security, with 62 percent encrypting data as soon as it hits the device and 59 percent as it leaves it. Only 50 percent of IoT companies have adopted a security-by-design approach. 92 percent of companies reported an increase in sales or product usage after devices have been made more secure, demonstrating a link between security and adoption 61 percent of businesses said regulation needs to be greater to specify who is responsible for security and data at each stage of its journey. 55 percent said safeguards are needed for ensuring non-compliance with security. 86 percent of businesses and 90 percent of consumers believe governments should handle regulation of the sector. Smart Device Selection Despite security concerns, adoption of IoT devices continues to rapidly expand. For industrial IoT (IIoT) networks, future business success is going to depend on connecting those edge networks in order optimize operations, drive production, reduce downtime, and create a safer work environment. When decision makers choose the IoT devices that will be deployed in their networks, it is critical to find products that meet the security and operating standards of the business. This can be determined through a careful evaluation of options. Are you looking to purchase IoT devices for your IIoT network? Consider carefully reviewing and answering these questions before you make your decision: What are your requirements? Must haves versus Nice to haves? Are there any regulatory considerations? What is the M2M communications technology controlling or automating? Is it essential that it operates without failure? What data is being collected and/or transmitted with this technology? Is it time sensitive and/or mission critical? What technology solutions have a proven track record for the applications being served? What external factors might impact the reliable transmission and receipt of critical data from one point to another? How does this M2M communications technology address challenges such as data encryption, network access control and signal interference? Can the vendor describe the security mechanisms? Can you understand them? Will this be secure even if everyone knows the security measures? (The right answer is yes, otherwise keep looking) Do we need this technology solution to be fail-safe, in order to prevent or eliminate catastrophic damage from occurring? What are the threat vectors I’m most concerned about? Is cyber security or physical security a greater concern for this deployment? What vulnerabilities have the Information Security community identified in the type or category of IIoT equipment I use? What is the right tradeoff between features, ease of use and security for my installation? Do I have a testing or evaluation plan in place? What ongoing improvements do I expect? While device security is going to be a lingering concern – especially as the lines between the IT and OT networks blur – companies have the power to prioritize security in their networks and make informed decisions when it comes to selecting their devices. Until there are more government guidelines in place, it is up to the IIoT decision maker to find these options in their quest for connectivity.
IIoT Edge Applications: Small SCADA
In a small SCADA environment, remote monitoring and automation are important tools for creating operational efficiency and ensuring cost-effective solution deployment. Real-time data in small SCADA environments enable programmable radios to act upon data at physical locations of the sensor or device. As such, processes can be remotely monitored and controlled without the Cloud. You still can send data to the Cloud, but only the data you need, when you need it. This frees up network bandwidth and minimizes latency significantly. In industries where even milliseconds count, this kind of Edge intelligence can mean the difference between ops in the red or ops in the black. We recently announced the release of our ZumDash application, which is hosted on our ZumIQ App Server, and can function agnostically across different I/O systems and networks. In a small SCADA environment, the ZumDash is ideal for real-time data aggregation and transmission. It is capable of running both at the Edge on hardware, as well as the Cloud, ensuring uninterrupted functionality. In an oil and gas setting, ZumDash can empower field operations managers via the intuitive dashboard display that can be customized to fit individual needs. Additionally, the app itself is powered by Node-RED programming, making it easy to configure on the fly, along with the ability receive real-time alerts for any operational needs like inspection, parts replacement, or troubleshooting. Essentially, having a remote monitoring and automation system powered by programmable Edge radios that can host proprietary third-party apps like ZumDash enable companies to more effectively deploy resources, saving time and money across the board. For any companies in the Industrial IoT space – or companies that rely on dispersed assets and asset management – intelligence at the Edge can be the true difference maker for your organization. For more information about the ZumDash Small SCADA application, please visit: https://www.freewave.com/zumiq-remote-access-control/ To learn more about the full ZumIQ solution, read case studies or download solutions briefs, please visit: https://www.freewave.com/zumiq/
ZumIQ Named Finalist in Control Engineering’s “Engineers’ Choice Awards”
Last week, Control Engineering Magazine announced our new ZumIQ App Server as a finalist in its Control Engineering 2018 Engineers’ Choice Awards program! This award opportunity is particularly exciting for FreeWave because along with the industry-wide respect that the magazine garners, the products themselves go through a fairly comprehensive review before being selected as a finalist. In late September, we officially announced the ZumIQ App Server, which combines 900 MHz wireless telemetry with the ability to program and host third-party applications, similar to a Linux-based Raspberry Pi embedded in an industrial Ethernet radio. One of the really cool (in our opinion!) facets of the ZumIQ is that Industrial IoT developers can program with any language that is compatible with a Linux kernel, including: Python, Java, C++, Node-RED and Node.js development environments. The ZumIQ App Server software comes pre-loaded with Node-RED, Python and MQTT for easy industrial IoT app development. For FreeWave, it really plants a flag in the ground for our ongoing goal of bringing true intelligence to the Edge. More importantly, it is a true testament to the engineering talent here that have bought into the company’s vision and put together an innovative, game-changing piece of hardware. We’d love to share a little more about the ZumIQ. To learn more, check out our ZumIQ Solutions Brief that can be downloaded here: https://www.freewave.com/zumiq-solution-brief-download/ If you like that, then we’d also love it if you headed over to the Control Engineering website and gave our ZumIQ a vote of confidence! You can find that link here: https://gspplatform.cfemedia.com/pe/productProfile/598e03dbe4b044ddd0c2ebbb It is an exciting time to be part of the FreeWave team, and part of the growth of Industrial IoT in general. The transformations over the last few years have been staggering, and the momentum and understanding of how these systems can improve business, quality of life and many other facets of our critical industries has only continued to grow.
Where is SCADA Headed?
With all the chatter around Industrial IoT (IIoT) and the disruption it brings to business operations, where does Supervisory Control and Data Acquisition (SCADA) technology for industrial organizations stand? Is it still relevant or will it be phased out? As businesses begin to recognize the benefits of modern technologies and deploy them across industrial networks to increase connectivity between the field and business office, this is a legitimate question. However, while organizations are working to modernize their operations, we are finding that SCADA is in no way becoming obsolete – at least for the foreseeable future. Instead, we are starting to see more modern approaches to SCADA. For example, there are now app-based small SCADA systems that are designed to fit modern network needs while putting less of a strain on technology budgets. Research also indicates that the SCADA industry will continue to drive forward. According to a recent report, the global Supervisory Control and Data Acquisition market was valued at $7.5 billion in 2014. It is expected to reach $11 billion in 2021 and is anticipated to grow at a CAGR of 7.40 percent between 2016 and 2021. In the Oil & Gas Market alone it is estimated that SCADA will be Worth $4.52 Billion by 2022. We Still Need SCADA Clearly, SCADA will remain an essential network component; however, we will likely begin to see modern technology have a transformative impact on SCADA. As industries increasingly adopt automation technologies to streamline monitoring and process control, technology providers are working on ways to better integrate SCADA and IIoT technologies into the network. With new programmable app server software platforms now available that combine 900 MHz RF-based technology with the ability to program and host third-party applications, there are clear signs that the SCADA systems of tomorrow will be designed to meet modern data and production demands. The newly available, app-based small SCADA systems that run on app server software platforms are already an indicator of a much more cost effective option than traditional SCADA. This gives smaller businesses an affordable way to manage data and control their network. Reducing Hardware to Drive ROI App Based Small SCADA solutions achieve the same critical SCADA functions of larger systems, including data management, logic execution and visualization – without the use of PLC-type hardware. The ZumDash Small SCADA App, for example, is programmed into FreeWave’s ZumLink radios to achieve collection, monitoring and control functionality. Furthermore, it provides a “dashboard” with status and trend visualization from any web-based device. Using Node-RED for simple, easy programming, the app-based small SCADA system was designed with minimal CAPEX and OPEX. The result is a system that increases production, optimizes operations and mitigates the risk of a catastrophic event. And the beautiful thing about a programmable app-based SCADA system is that it is customizable to individual network needs at a fraction of the cost of a traditional SCADA setup. As technology and automation demands continue to drive innovation, we expect to see an increase in advanced approaches to SCADA. As we look towards the future of SCADA, we see IIoT enabling better operations and control of the network, faster ROI, safer operations and reduced downtime.
International IIoT Perspectives: Fog Computing On a Global Scale
Fog Computing is a slippery concept. It combines two critical components of data computing today, Edge and Cloud computing, into a system that leverages the strength – and necessity – of both. This idea of local computing (the Edge) combined with more complicated analytics engines (the Cloud) opens up a world of possibilities for data communications. Fog Computing & Emergency Response Earlier this fall, researchers at Georgia Tech looked at the application of Fog Computing in areas struck by natural disasters. In these areas, traditional means of internet connection are often knocked out of commission, leaving rescuers and victims unable to communicate with one another, even though there are many apps designed to help facilitate rescue. Where Fog Computing comes in is that rather than relying on a direct connection to the internet, different Fog nodes can be leveraged to create an ad hoc network that can still send basic messages: However, one important advantage of a fog system is that messages can be distributed between a broad network of computers through temporary ad hoc connections, even without live internet connections. The geo-distributed network of fog nodes, which could be phones, tablets or any device part of the Internet of Things, could generate communication channels in areas where there were none before, allowing the creation of population density maps in flooded areas. Another application would allow users to check the fog network to see if their family members are safe after a crisis event. Fog Computing applied in this setting is applicable around the world, as we are reminded daily of both the ubiquity and fragility of wireless communications against the whims of nature. Smart Grids Need Fog Computing Across the globe, more and more countries are jumping into smart grid deployments. The good side is that smart energy tools are critical to managing resources. The bad side is that most are not sufficiently developed with the necessary security infrastructure in place. When considering the rapid development of smart grid tech, Fog Computing quickly comes up as a viable tool for ensuring reliable data communication and information transfer between consumers, grid operators and larger energy providers. The Open Fog Consortium, a global Fog Computing group comprised of technology and academic thought leaders, has formed Resilient Information Architecture Platform for Smart Grid (RIAPS), a project aimed at developing software for Fog Computing platforms: RIAPS is very different from conventional platforms as it was designed for inherently distributed and decentralized applications. An application is composed of interconnected real-time software components (similar to micro-services) that can be event- and/or time-triggered and that interact via well-defined communication patterns, including publish/subscribe and synchronous and asynchronous service invocations. Such components are location transparent and agnostic about the underlying messaging framework. Although the project is based out of Vanderbilt University, in the United States, the repercussions will be felt throughout the world. Is Fog Computing the Final Answer? While Fog Computing has yet to be standardized and applied across the wide range of IoT technologies out in the field today, its ability to combine both local and Cloud data analytics is something that can have an impact in both the consumer and the Industrial IoT. However, the first adapters, companies that play in IIoT settings, will be largely responsible for driving the growth of this concept moving forward into the future.
Calling Industrial IoT Developers…to the Well Pad?

Organizations continue to enhance their digital transformation strategies as they see measurable benefits and improvements in operations. Many industries that have traditionally used either manual methods or a disparate technologies for data collection, will soon have access to next generation, cloud-based monitoring and control of their networks. In these networks, robust wireless communication technologies bring intelligence to remote assets, enabling command, control and visibility from computers or mobile devices, and accessibility from anywhere. These future-proof wireless telemetry systems leverage automation and programmability to monitor data globally and execute and process logic locally. As organizations eye the future of operations with these types of capabilities there are big opportunities for software developers in the Industrial IoT (IIoT) space. Developers in Demand With programmability introduced to the industrial IoT network, the possibilities for developers are endless. Novice developers could even leverage open-source technologies like Python and Node-RED to enable new applications for monitoring and control that can transform business operations. We’re already seeing automation prototypes for tank level monitoring of remote and isolated oil/gas assets, and this is only one example of the type of application that would prove highly beneficial for organizations with geographically dispersed assets in the field. These programmable solutions are also extremely flexible, as a company can choose to develop the app themselves or integrate third-party applications. There is at least one pilot program currently in progress designed to support and enable developers who want to create applications for expansive IIoT networks. IIoT app development can serve a number of industries. The ability to add programmability to these solutions further supports companies as they digitize operations. Next Generation Automation for Oil and Gas Small-to-medium-sized oil and gas companies in particular can benefit from automation technologies that combine wireless telemetry with programmability, especially in terms of ROI. By automating manual processes, they cut down on operating costs by a large marker. Well pad automation technology builds analytics and intelligence into the wellhead environment. This is a big step beyond traditional communications because it enables the intelligent applications and programmability to establish an advanced operating environment. With a modern communication network in place, the organization becomes more agile and productive because it can leverage predictive analytics, remote command and control, new protocol translations, and modern cloud-based services – all at the well pad! When the oil and gas company has the power to make informed decisions that drive higher production outputs, they are able to visualize and measure the benefits. It’s an exciting time in the IIoT space as we watch digital transformations change the way companies operate. With more processes automated and programmability being incorporated throughout the entire network, even at the most remote edge, we’re seeing significant opportunities for developers to help point these industrial organizations at the future.
Programming for Cloud-to-Device Communications in Industrial IoT

Should you leave processing in the cloud or on the edge? Both. Particularly in IIoT, developers need to start thinking about both tracks. There is a power struggle going on in the Industrial Internet of Things (IIoT). Many think cloud applications are the future of real-time data processing in IIoT settings; others believe data should be processed and decisions executed at the edge of the network. In truth, the answer lies somewhere in the middle: Data needs to be processed both via the cloud and at the edge, which presents an interesting opportunity for software developers in the IIoT space. Clearly, being able to operate industrially hardened smart devices remotely – and in many cases automatically – from the cloud presents many benefits. But the challenge lies in potential connectivity issues when developing applications. Developers must think along a dual track, which means that they must think about how an app developed for the cloud can be mirrored to run on the edge device itself. Several factors converge here to create a unique atmosphere for developers: connectivity, security, and today, the programmability of edge devices. Traditionally, the devices themselves simply acted as conduits for data collection and transport, but today, hardware manufacturers are creating devices that can host third-party applications. A point worth noting is the advent of Node-RED, which can streamline some of the programmability challenges. So, understanding the need for mirrored applications, let’s look at a few use-cases that highlight exactly why this redundancy is necessary. Cloud-to-Device in the Oilfield In the case of oil fields, when the edge app sees an oil pump showing a temperature reading above a predetermined safety level, the applications on the device can decide to shut the pump down, or the cloud application can send a command to do so. In cases where there are emergencies, different sites might have a different set of actions that need to be initiated. In fact, most sites have thermal sensors on the oil pads. If the oil pads exceed a certain threshold, then these cloud programs know there is an explosion and a fire happening onsite. To prevent a chain reaction, the cloud will send a command to shut down all the pumps and all the valves in that area so they don’t create a chain reaction and keep spreading. Extending the oil site example, if there is an intentional attack on the site, the first thing you do is disconnect the communication lines back to the cloud to protect the network. In that scenario, having the same application running on the cloud and the edge devices still allows the same decision to be made in the local network by the device itself. If the device cannot ‘see’ the cloud, it can still respond and execute tasks. If the cloud program is not responding, and the device notices the pad temperature goes beyond the threshold, it can initiate a local shutdown protocol. Once the network is back online, the device can send this information back to the cloud which can, in turn, be given to site operators remotely. Because of these necessary duplications, programming for these settings can be difficult. For example, in Oracle applications, in SCADA networks, all of the applications run on Java. Oracle pages run on Java. Therefore, most programmable industrial devices must demonstrate that they can run the same Java application locally. Many IIoT platform providers have now expanded the scope of the programming. They’ve built devices that can actually drag and drop the same Java code from the cloud into individual edge units, to run that device. Of course, it has to be developed for a device and for the cloud, so it requires some extra attention, mainly because on the device, the decision-making is slightly different. It does not execute the application unless it cannot speak to the cloud. When it cannot speak to the cloud, then it executes the command just the way the cloud would. Redundancy Applications in UAS In other industrial settings – unmanned systems, for instance – the protocols are different. If a drone can’t communicate with the operator, it could have a simple command that says, “Trace back all your GPS location and fly them in a reverse mode and go back to where you came from, until you can establish communication and get new commands.” So, it’s the same concept. Programmable IIoT platforms are now being set up and designed so that they can run applications in multiple different languages. If the application is written in C, Java, Python – basically, anything that can be read on the cloud – it can be dragged and dropped into those edge units, and it could execute the same protocols directly on the edge device. This simple concept is transforming the way the IIoT thinks about data transport and real-time decision-making. If you write your code once you can drop it in both places, and if the device loses communication, it knows what to do. Of course, there are many other considerations when thinking about programming applications for the edge and the Industrial IoT. Security remains paramount, and we see examples every day pointing to a potential meltdown if security isn’t addressed properly. Still, the potential for the cloud-to-device communication and application execution remains great. For developers, being able to think across platforms, languages and program functions are three key points to consider when creating applications for the Industrial IoT. This article originally appeared on DZone.com
IIoT News Roundup: How IoT is Saving Lives

In the past several weeks, there have been two massive natural disasters in the U.S., as Hurricane Harvey made landfall in Texas, bringing historic flooding to Houston and surrounding areas, and Hurricane Irma devastated parts of the Caribbean and Florida. Sadly, thousands of people find themselves without power, food and shelter. It is indeed a terrible tragedy and our hearts go out to those affected. In this devastation, however, there is a story emerging about the role the Internet of Things (IoT) has played in disaster preparedness. Indeed this technology has matured to the point that it is making a real and measurable impact in helping communities prepare for, respond to, and recover from disaster. In today’s IIoT news roundup, we will take a look at several stories emerging around disaster preparedness, smart cities and the IoT. Disaster Response in the 21st Century: Big Data and IoT Saves Lives In this story from Forbes, author Chris Wilder describes some of the ways the IoT and other technologies have changed the way disasters are predicted and responded to. Specifically, Wilder cites the ways crowd sourced emergency applications have made post-disaster communication and emergency dispatch easier and more streamlined. Further, Wilder speaks to the ways Big Data generated from sensors and meters throughout the region helped give more advanced notice to impacted areas and helped predict the path of these hurricanes with greater accuracy. IoT’s Role in Natural Disasters like Harvey In this article from IoT for All, author Hannah White discusses how the advent of the IoT has fundamentally changed the way hurricanes are predicted and responded to. Specifically, White discusses how open data was used to list Red Cross shelters with space availability, as well as evacuation routes that remained passable. White also describes the way organizations are leveraging drone technology in their response. Oil and gas companies are using drones to inspect their facilities, while insurance companies have been able to use the tech to capture high-resolution 3D images of damage to help expedite claim response and enable those affected to rebuild and recover more quickly. Finally, White discusses the way different organizations are leveraging IoT sensor arrays to measure and predict natural disasters in advance, helping to provide critical time to those in harm’s way. Where Will Hurricane Jose Go Next? How Drones and Lightbulbs Help Predict Dangerous Weather Unfortunately, Irma and Harvey are being quickly followed by another potentially dangerous storm (at the time of writing, Tropical Storm Jose) looming east of the United States. In this article from Newsweek author Kevin Maney describes the ways technology is helping us predict storms with greater accuracy. In the article, Maney notes the one of the key components for more accurate weather modeling and prediction is vast amounts of data. Indeed, the IoT is the most prolific and advanced data engine in technology history, and scientists are able to leverage the IoT to make incredible breakthroughs in their weather modeling algorithms. Department of Energy Investing in Power Resiliency In this recent blog post from the Department of Energy, it was announced that the DOE is invested some $50 million to help improve the resilience and security of the United State’s energy grid. This is a particularly timely announcement in the wake of Harvey and Irma, whose impacts on area electrical grids were profound. One of the technologies in discussion as part of the investment are micro grids, smaller, more “agile” energy structures that make the impact of localized storms less widespread. In a traditional grid system, one transformer can impact wide swaths of residents, while a micro grid limits damage and makes repairs simpler, less costly, and faster. Final Thoughts While the devastation caused by these two natural disasters cannot be overstated, IIoT played a significant role in saving lives both before the storms made landfall and after the storms had passed. When it comes to these sorts of disasters, even minutes of additional notice can mean the difference between life and death. As IoT solutions grow more robust and continue to become more ubiquitous in cities across the globe, we expect prediction and response capabilities to continue to advance at an incredible pace.
NFL Advances In-Stadium Wireless Connectivity
(Image courtesy of www.sportsauthorityfieldatmilehigh.com) With the NFL season kicking off, we decided to investigate one of the more overlooked aspects of the game: in-stadium wireless communication. Surprisingly, several aspects of the game experience rely heavily on wireless communication: coaches headsets on the field and in the booth, concession stand payment processing, and, of course, fans with smartphones. Anyone who has attempted to connect to publicly available wireless internet in a stadium, concert venue or otherwise generally crowded area knows that connectivity is finicky at best and nonexistent at worst. In the era of instant score updates, fantasy leagues, Twitter and other social media applications, fans expect to be able to use their smartphones during a live-game experience. Additionally, even just a few years ago coaches themselves dealt with connectivity problems: … The tablet computer in his left hand — a high-tech replacement for the black-and-white printed pictures coaches have used for decades to review plays — kept losing its Internet connection, leaving Belichick unable to exchange images he and his coaches rely on to make in-game adjustments. The fault is apparently in a new private Wi-Fi network the NFL installed in stadiums this year to great fanfare. Internet service is erratic, making a system financed by one of the world’s richest sports leagues little better than the one at your local coffee shop. … Of course, since then, the NFL has gone out of its way to better incorporate wireless communication technology into the stadium experience for fans and personnel alike. This year, the Denver Broncos 3,000 5 GHz wireless antennas in Mile High Stadium (we should note, the claim of ‘most of any NFL venue’ is unverified): To increase fan connectivity, Broncos announce install of 3,000 5GHz wireless antennas at stadium, believed to be the most of any NFL venue. pic.twitter.com/ES2CWZhJ0z — Patrick Smyth (@psmyth12) September 5, 2017 For the NFL, and other large events, the question of connectivity has more to do with bandwidth capacity than access to a wireless network. Most cellular carriers provide access to LTE networks in the populated areas where stadiums and event centers are located, but the sheer amount of data being used during an event like the Super Bowl has grown exponentially over the years. In 2014, data usage at Super Bowl XLVIII totaled around 2.5 terabytes. Super Bowl LI, played in February 2017, saw nearly 12 TBs transferred throughout the game over WiFI alone, with Facebook and Snapchat accounting for almost 10 percent of the total bandwidth. Verizon and AT&T customers combined to use another 20 TB of data over those networks. With those numbers in mind, it makes far more sense to utilize high-bandwidth technology like WiFi, rather than relying on the LTE networks to support those big data figures. When IIoT and the NFL Collide The average consumer thinks of WiFi as a broadband service facilitated by a router in one’s home or office. When scaled to the usage size of a football stadium-worth of bandwidth consumption, however, a regular router will not suffice. Instead, these stadiums use wireless communication technology that has been deployed with regularity in the Industrial IoT for years: signal repeaters and access points peppered strategically throughout the necessary coverage areas. Just like companies in the utilities, oil and gas, precision agriculture and smart city industries, these stadiums are relying on industrial-strength WiFi platforms to handle the data demands of teams, vendors and fans. An additional consideration for stadiums and critical industries is the security of these networks, so tech vendors must be able to supply built-in security measures within the access points. These networks must be secure, flexible and reliable in order to support the massive demand being made for hours on end. The New Generation of Stadium Experiences We tend to take internet access for granted these days. Connectivity is already nearly ubiquitous and only growing each year, so it makes sense that stadiums would eventually start to catch on to the technology being used to propagate these industrial-strength networks. At this point, it is not just the NFL that is working on pushing the stadium experience into the next generation, other professional sports leagues, music venues, and festival sites are catching up to the IIoT technology that is proving to be a literal game changer.
Hackathons Giving Birth to Innovative IoT Solutions
One of the fastest growing spaces in tech is the world of connected devices — often called the Internet of Things. In the embedded engineering and software development worlds, this technological shift is so pervasive some have taken to called it “The Internet of Everything.” While organizations and enterprises are increasingly putting the IoT at the root of many of their forward-thinking business strategies, one of the strongest engines of innovation stems from hackathons. Hackathons are essentially software or hardware challenges, where teams of developers or engineers are giving a task (i.e. build a smart city solution), with specified hardware or software (maybe a certain development board or programming environment), in a specific time period (anywhere from a few hours to a few days). In today’s top IoT news, we’ll take a look at a few stories in the industry about hackathons and how they are helping shape the IoT. Functional Fabric Hackathon Leads to eTextiles Innovation One of the fastest growing areas of the IoT revolves around smart clothing — sometimes called eTextiles. Smart clothing can range from simple solutions like integrating sewable LEDs into clothing to craft safer bicycling attire, to embedded sensors that are used to monitor environmental conditions for oil and gas workers. Recently, as noted in this article from “The University Network,” the Massachusetts Institute of Technology hosts a hackathon focusing on “Functional Fabric.” MIT has long been a hub for IoT innovation and is one of the epicenters of eTextiles. In the Functional Fabric Hackathon, teams of students faced the challenge of design clothing solutions that would aid soldiers, first responders and victims of disasters. The teams had three days to come up with their solutions and were competing for two grand prizes of up to $15,000. 22 teams competed and the winning solution came from an MIT student group called “Remote Triage.” Their solution was a sensor system that could be embedded in a soldier’s uniform, that would monitor not only vital signs, but could then report any injuries to field medics, provide location of the injured soldier, and even triage the severity of the injury with a color coding system. Hackathon Challenges Young Women to Build Smart City Solutions “She Builds Tech — Smart City Hackathon” recently challenged young women in India to build the smart city solutions of the future. As noted in this article from The Hindu, there were ultimately five winners — a solar energy harnessing paint, a water grid solution system, geo-fencing, a smart ambulance service, and a routing and scheduling system for tourists. The event lasted for two days and attracted over 300 girls from various engineering colleges. TechCrunch Disrupt Hackathon Coming in Mid-September TechCrunch Disrupt, the event that has becoming one of the world’s biggest stages for innovative new technologies, is rapidly approaching, with the San Francisco version of the event scheduled to kick off on September 12th. The hackathon will pit teams against each other in a two-day sprint to design the most impressive tech. At the end of the hackathon, teams will have just 60 seconds to impress judges for their shot at a $5000 grand prize, a slew of gifts and gadgets provided by sponsors, and all the glamour that goes along with winning one of the countries most elite hackathon competitions. To learn more about the hackathon, or to grab tickets to watch the action, check out this article from TechCrunch. — Hackathons continue to prove that innovations in the worlds of IoT, embedded engineering, and software solutions do not have to come just from the prototyping labs of Fortune 500 companies, but can emerge from groups of students and tech enthusiasts faced with big challenges and short timeframes.