The Industrial IoT Risks You Must Not Ignore in 2018

The haste to adapt IoT technology has left many enterprises facing a growing problem: IoT security. How network and systems architects respond could determine the long-term viability of IoT technology. An interesting paradigm within the Internet of Things has emerged. Stay with us here: IoT technology is designed to improve efficiency and make everything “smarter.” IoT technology is especially vulnerable to security breaches. These security breaches are costly operationally and financially – to the tune of $2.5 million per attack for large enterprises. Security is not the focal point for IoT engineers and developers. One of those statements doesn’t add up.   Like other new technologies before it, IoT is going through its honeymoon phase. Can we cut out a manual process? Can we improve data transmission speeds? Can we make our machines smarter? When the answer is yes, the solution is IoT technology. But the haste to adapt to these new possibilities has left many feeling a growing and very real problem: security. How network and systems architects respond to this problem could determine the long-term viability of technology that holds either the promise or the challenge of fundamentally changing the way our industrial sectors function. For decades, Supervisory Control and Data Acquisition (SCADA) systems have played a significant role in industrial operations. Industries like oil and gas, electric power/smart grid, agriculture, and utilities have implemented SCADA systems and networks to collect data and automate processes, and are always looking to automation systems for more effective ways to operate. The capability to collect more data from geographically dispersed field assets in remote locations has driven the need for enhanced communication technologies. The number of sensors and data points collected will continue to rise dramatically with improved connectivity. This collected data helps operators improve operational decisions, save manpower and, in many instances, keep employees safe by avoiding dangerous environments. Today, industrial network operators are increasingly implementing end-to-end IP connectivity or the Internet of Things (IoT), enabling more capabilities at the edge of these networks. This does not make SCADA systems obsolete by any means; it opens the door to greater possibilities of enabling new applications and analytics with every single data point being captured in the system. There are many implications for the concept of a connected enterprise in terms of network security. Critical infrastructure projects are only as reliable and secure as the technology serving them. Security, therefore, will ultimately be the limiting factor on how much IoT technology is deployed. With security, the traditional trade-off is either “easy to use” or “secure”— but not both. We often consider features to be part of the equation, though in most cases operators are not willing to trade off features. Today’s security challenges Traditional SCADA systems have several challenges when it comes to security. With more data being transported than ever before, it’s important not only to secure assets, but to secure the communication link itself. Traditionally, SCADA systems have been on the outside of a firewall from the corporate IT network. Newer SCADA systems that use Ethernet devices are more security focused with measures such as VPN, secure sockets, encryption, and dedicated log-ins on the devices. Intelligent sensors offer value With the growing use of IoT technologies, operators must realize that the system is not only providing a communications path, but also enables intelligent sensors that provide additional value when using that path. Rather than just Remote Terminal Units (RTUs) and Programmable Logic Controllers (PLCs) at the edge of the networks providing data, the sensors themselves may be running an application on the edge of the network, and many of these devices are using IP. IIoT sensors bring more capabilities and increased connectivity to these devices, and their full value may not be realized if the only connection to the device is through a PLC or RTU. Long-promised benefits, such as assessing predictive failure, become possible when the device can be accessed directly. IoT implies that data flow is no longer strictly controlled and only accessible via the SCADA system, but that data in any form from any device can be accessed by any system which needs it. There is no longer a reliance on SCADA system providers to support device compatibility if the data can be accessed through another means. With IoT, many industries are now looking at how every single asset, across every facility, can be connected through the internet (or an intranet), making data readily available to key decision makers, without the time and resource bottleneck of routing all of that information through a central SCADA system. When there is Ethernet everywhere and IP devices going out to the edge in the field, each one of those devices has the potential to become a threat to the entire corporate IT network if not secured properly. In comparison to a traditional SCADA system, this is a communication network on a much larger scale with thousands of potential end points. Operators in IIoT environments need to be concerned with everything that could be introduced to the network at every single connection point. This IoT data can be extremely useful, but safely enabling it requires a network that can meet the necessary security requirements. Using standards like TLS/SSL and basic AES-128 data encryption, secure connections can be established, even where data moves across an open network and it’s assumed that an unauthorized party could potentially see the traffic, such as in an Industrial IoT environment. When data is properly encrypted, an unauthorized party cannot access it even if they can see it. In wireless connections, standards-based connections allow relatively easy access to the moving data, leaving encryption as the only line of defense against snooping. The dangers that lurk in IT/OT convergence Traditionally, companies have a corporate firewall that divides the corporate IT space from operational technology (OT) space. With an IoT network this division is greatly reduced, and so there is a need to protect the sensors and new applications on the OT side. However, even with a secure communication

What We’re Thankful for in IIoT

As we approach Thanksgiving, we can’t help but reflect on what an unforgettable year it has been. Transformation and innovation have been at the forefront of the digital technology landscape as Industrial IoT emerged as a clear game changer. Businesses, looking to modernize and stay competitive, are changing the way they operate – and we are incredibly grateful that we get to play a small role in their efforts to adapt digitally. Businesses, especially those in the industrial and commercial sectors, now have the ability to incorporate intelligence and automation at the most remote edge of their networks. Today, we are looking at networks that can reliably monitor data, execute logic locally and enable visibility globally through the Cloud. In these times of transformation, learning, and change, we’ve found a lot of things to be thankful for. Here’s what we are thankful for in IIoT: Business Transformation and Beyond Businesses are transforming in ways we never thought possible thanks to the powers of automation through IIoT technology. Today, organizations are focusing on things like increased throughput, intelligent hardware, app dev and security as they look to improve their business operations. With the right set of technology in place, ROI happens fast and production is optimized.  With new approaches like fog and cloud computing we are expecting to see more bandwidth and better real-time data analytics in these types of networks where data is critical for operations. Beyond the business benefits, IIoT is set to improve things like environmental and seismic monitoring Edge Intelligence Businesses today have the option of leveraging low-power FHSS technology to automate processes at the network edge. The proliferation of smart sensors and high-bandwidth devices makes low-power FHSS technology a viable and cybersecure wireless data option. By employing FHSS technology, businesses can take advantage of intelligent edge communication devices that can be deployed as process automation nodes that make decisions and take action at the Access Level (or at the sensor or device). Increased Safety Thanks to devices at the edge and self-healing networks, IIoT has enabled environments where less manpower is needed in the field, facilitating a safer work environment in industries where field sites can be hazardous. Modern technologies can now collect data in remote and hazardous environments, significantly reducing the number of trips to unsafe locations. The reduction in man power in the field, allows companies to re-focus that man power where it’s needed to improve business operations. Opportunities for developers New hardware solutions have the ability to host third-party applications at the edge of the network. This has created a big opportunity for developers to create apps designed for IIoT needs. Additionally, as Node-RED programming has risen, it is has become feasible for non-developers to create proprietary applications without a computer engineering degree. Professional developer or not, there is plenty of room for app development in IIoT. IIoT is changing the way businesses operate and we now have the power to make decisions that optimize production and minimize downtime. As a technology provider in this space, it is an incredible opportunity to innovate and create solutions that meet both today’s needs and the demands of tomorrow. We’re thankful for the opportunity to innovate in this space, but most importantly we’re thankful for our employees, customers, and partners who are on this journey with us. Have a Happy Thanksgiving!  

IoT News Roundup: Where is IoT headed?

The holiday season is fast-approaching and it seems there’s always a never-ending list of tasks that need to be completed every year. Just like the holiday checklist, tech in the IoT space seems to be ever-changing and expanding. As tech leaders and innovators we understand that life is hectic and unpredictable, but to make sure you don’t miss a beat, check out this week’s line-up for news in the IoT industry. Previously, we explored “How IoT is Saving Lives” when two massive natural disasters struck the U.S. In this post, we’ll ask the question, what’s next for the world of IoT/IIoT? Take a look at some of the top stories from the past couple of weeks: Forrester predicts what’s next for IoT In this recent post from @NetworkWorld about Forrester Research’s predictions post, Fredric Paul, @TheFreditor, asks the question on many people’s minds: Where is IoT headed? Among many points Paul makes in his article, one points out how IoT is likely to become more specialized in the coming year, moving away from generic hardware and software into platforms designed for specific industries. So-called “design and operate scenarios” will let IoT developers focus on the attributes that matter most to their own industries and use cases. Smart networks must evolve for mission-critical environments   From @embedded_comp, Michael Ulch explains how the IoT industry has been flooded with advances in smart home automation, self-monitoring appliances, and connected security systems. All of these facets are important for the IoT existence but Ulch asks the same question as other reporters: what is next for IoT? Ulch believes that some of the greatest potential of the IoT is in the industrial and manufacturing realm, where Industrial IoT (IIoT) has the promise to monitor systems for preventative maintenance and boost energy efficiency and workplace productivity. However, Ulch says, successfully scaling from the smart home to the smart factory will require overcoming a number of technical challenges.   How manufacturers are benefitting from the IoT revolution In this @NetworkWorld article by Majid Ahmed, it’s made clear that few people stand to benefit more from the IoT revolution than today’s manufacturers. Ahmed states in his article that whether it’s harnessing the power of data and metadata to make wiser decisions, or developing new and more efficient technologies capable of saving energy cost, the IoT is fundamentally reshaping how manufacturers produce the goods we use in our everyday lives. Businesses not aware of IoT issues This article from @techradar by @maxcooter ‏ briefly starts off by referencing an article from January, 10 surprising trends in the IoT for 2017, then Cooter continues, stating that Cradlepoint survey finds lots of interest in technology deployment but lack of security awareness. Cooter points out that, from these findings, IoT-using companies should be prepared to have a thorough overhaul of its infrastructure before deploying the technology. Despite the serious concerns about security, most are not having a second thought about rolling out IoT. Will this security breach take down most companies? Time will tell.   The Industrial Internet of Things is Here to Stay In this article from @cbronline (Computer Business Review), author David Stain discusses how manufacturers are welcoming in a new era of productivity by enhancing Industry 4.0. The IIoT is at the heart of this transformation. Stain explores how a company’s success is often linked to its efficiency, hence visibility, across the plant floor, and how extending into the supply chain is a necessity. To keep pace with this competitive environment and the ever-increasing customer demands, every stage of the manufacturing process is facing the digital revolution. Final Thoughts: Virtually all industries and workers are benefitting from the technological revolution brought about by the inception and ensuring growth of IoT. Every industry does need to be cautious of the security threats that IoT comes with. Knowing this, we will still continue to see the growth for IoT especially in the manufacturing and Industrial industries.   Be sure to stay tuned to our blog for the latest industry news and to read more about our own insights into some of these major trends.

Four Ways to Optimize Your Operations for IIoT

The phrase, “the future is here,” is overused and has evolved into a catchphrase for companies struggling to position themselves in times of technological or digital transformations. Still, the sentiment is understood, especially in times like today, where the Internet of Things is quite literally changing the way we think about hardware and software. We’d like to offer an addendum to the phrase: “The future is here more quickly than we thought it would be.” Digital transformation, increased computing ability, smart hardware and the growth of connectivity capabilities created a perfect storm of accelerated industry, and many were left scrambling to sift through the large amounts of information and solutions available. With that in mind, we wanted to provide some advice for companies across the industrial sector for the best ways to optimize operations for the Industrial IoT. 1) Upgrade your network and throughput capabilities. Nothing can kill the ROI of automated processes more quickly than the literal inability to function. It’s important to understand that as you upgrade machinery and invest in the software to run it all, those systems demand greater bandwidth in order to effectively utilize the big data and analytics capabilities. Several options exist, but for most companies some combination of industrial-strength broadband (WiFi), narrow-band, cellular and RF communications will create the most effective network for the needs. 2) Invest in smart hardware. This may seem like a no-brainer, and really, in the not-too-distant future, you may not even have a choice, but the shift toward Fog Computing is gaining momentum and being able to run decentralized computing between hardware and the Cloud can not only create greater operational efficiency, but it can also allow your data transmission to run more smoothly as well. The beauty of a Fog Computing system is that it allows a greater number of devices to transmit smaller data packets, which frees up bandwidth and speeds real-time data analytics. The core of this lies in the smart hardware. 3) Be proactive about application development. Smart hardware means that it has the ability to host applications designed specifically for your needs. Previously, many companies shied away from app development because it required highly skilled developers and devices capable of hosting those apps – a combination that wasn’t readily available. Today, the scene has changed. With the rise of Node-RED, it is much easier today to create proprietary applications without a computer engineering degree, and any company serious about leveraging IIoT technology needs to be able to to use the full scope of its data. 4) Secure your communications. There isn’t much more to be said about the importance of cybersecurity. If the last few years of massive data breaches haven’t rung alarm bells, then you aren’t paying attention. Cybersecurity today is a multi-layered need. Most companies building smart hardware are beginning to build encryption directly into the devices. But, since many companies use Cloud applications for computing and analytics, it is important to invest in strong security measures at that level as well. Unfortunately, the sophistication of cyber-attacks are only going to increase, along with the increase in importance of the data needing to be protected. It pays to be paranoid and act accordingly.  

Looking Ahead: Kicking Off 2018 with Industrial IoT

As we face a quickly approaching 2018, it is shaping up to be a busy year!  We are building a line-up of presentations at leading industry conferences to share our findings, innovation and expertise on the trends we’re seeing around Industrial IoT, the intelligent edge, and all the markets we have a presence in – oil/gas, military, unmanned systems, government, and utilities (to name a few). This year, we will be kicking off 2018 with a presentation at an Industrial IoT event in January hosted by TMC and Crossfire Media. This week, show organizers released details about the Industrial IoT Conference program being held January 22-25, 2018 at Disney’s Contemporary Orlando, Fla., and we are thrilled to be a part of the event. Here’s what we learned from their news: “The event will focus on the IoT technologies and solutions increasing the productivity and efficiency of manufacturing and production processes. The Industrial IoT Conference is collocated with IoT Evolution Expo which in its 19th iteration is the leading education and networking forum for the enterprise looking to understand how to develop and implement IoT Solutions.” The event is also going to offer a blend of keynotes, breakout sessions, panels and special events. FreeWave to Present in Orlando During the event, Scott Allen, the CMO of FreeWave Technologies, will have the pleasure of joining the Industrial IoT (IIoT) breakout sessions as a panelist in “IoT on the Factory Floor.” The session, featuring top IIoT experts and business leaders, will look at how IOT is being deployed on the factory floor and how it improves the management of production. Panelists will also answer important questions, such as: Have we gotten to the point where Programmable Line Cards are taking advantage of connectivity or are gateways making human intervention easier? Where is the promise of IoT for manufacturing being delivered and how? See the full event schedule here. Manufacturing & IoT in the News Recent reports indicate IoT in the manufacturing market is expected to grow at a CAGR of almost 30 percent. As manufacturing businesses work to reduce costs and innovate, while dealing with a transitioning workforce, the report predicts rapid growth in IoT investments. A recent Forbes article highlights the opportunity for app development as many in the manufacturing industry head towards retirement. As indicated by the rapid adoption of IoT, the “IoT on the Factory Floor” session in Orlando will certainly offer timely insight. We recently covered some big headlines in manufacturing, read the blog post to see which news stories caught our attention: https://www.freewave.com/iiot-headlines-manufacturing-big-data-predictive-maintenance-remote-access/ As we head towards the new year, we are in awe of the innovation and disruption that we often found ourselves in the middle of in 2017. We have some bold thoughts on what’s to come for IIoT in 2018 – so keep an eye out for that! Be sure to look for us in Orlando if you’re attending the Industrial IoT conference in January! We hope to see you there.

FreeWave Blog Series: The Intelligent Edge (Part 2)

Part 2: Novice App Dev – A Q&A with Greg Corey from FreeWave The Internet of Things (IoT) has changed the consumer world in ways no one ever imagined.  By placing intelligence in the IoT network, the “Thing” can do whatever we want it to do.  Now Industrial companies are seeking to take advantage of this edge-deployed intelligence in order to maximize profits, improve safety and streamline operations. In addition to the challenges IoT technology had to overcome – such as cybersecurity, scalability and interoperability – Industrial IoT (IIoT) must also focus on reliability, ruggedness and more. FreeWave is uniquely positioned to understand and address all of these challenges. We have delivered world class IIoT platforms for almost 25 years to thousands of industrial and unmanned systems customers. With that experience, we’re now leading the charge to deploy intelligent applications at the edge of industrial networks and unmanned systems. In the third installment – and second half of an interview we ran last week (read part one of the interview here) –  of “The Intelligent Edge,” we sat down with Greg Corey, FreeWave systems engineer, to talk about his new app – ZumDash – and the future of app development of the Internet of Things. FreeWave: Over the course of developing ZumDash, are there any lessons or things that you took away from it that if you could go back and do it again, you would change, or moving forward you kind of see as something that you will incorporate into future projects? Greg: Yes, definitely. I’ve only been using this a couple months, and I’ve learned a lot about it. I think what’s really important about Node-RED is that it empowers non-software developers to solve problems using software, and it’s taught me a lot about the types of problems that you’ll run into when doing software development. There are some challenges I’ve had to overcome in that. But, every release that I make of this app it gets better and it becomes more usable. FreeWave: When you say more usable, what are some of the things that you’ve of tweaked to make that happen? Greg: So, instead of having to change a setting in five different places, you change it in one and then you can store that setting and pull it from there. Bringing stuff to the forefront where a user can modify it instead of having to modify the code underneath. Basically, giving users more control over how the application runs and making it simpler after setup are two of the things I’ve tried to flip this on. Incorporating some UX/UI elements. FreeWave: Are there any high-level industry points that you think are important to consider as well? Greg: One thing is that FreeWave radios have always been just a radio product, and that goes for any radio manufacturer: you put data in and then it comes out the other side. And our radios have been put on sites to do just simply that task. If you look at the consumer space, 10 years ago, and you think of all the devices that we had in our lives, like a GPS navigation device, and then maybe an iPod, and a tablet, and then maybe a voice recorder or something like that. Those are like four or five different pieces of hardware that only did specific tasks. Now, in 2017, everybody has a smartphone, nobody has an iPod anymore, nobody has a GPS navigation device anymore because they’ve all leveraged software on hardware on smartphones. Eventually, radio platforms are going to go the same way. In the industrial setting, people are going to buy a radio and put it out there, then they have all these other specific hardware devices to do these things. What if the radio could be that smartphone where you just leverage some software and were able to cannibalize all these other hardware-specific devices by using software just like the smartphone revolution. FreeWave: So, ‘things’ are becoming not just smarter but they’re having a greater possibility to put interactive software applications onto devices that didn’t really used to have that capability? Greg: Hardware has gotten really cheap and it’s gotten really commodified, so any manufacturer can put together a little hardware solution in a very small form factor. The advantage anymore is not hardware anymore, it’s software because a lot of these hardware manufacturers are using the same chipsets from the same vendors. And, really, the playing platform is equal if you’re making just hardware, but the real secret sauce and the advantage comes in leveraging software on devices. FreeWave: What about the Fog Computing aspect of this that seems to be a growing piece of the puzzle? Greg: Fog Computing – that’s the paradigm where you can have these intelligent Edge devices that are making decisions instead of having everything centrally located. It’s like mainframes back in the day, everything was centralized, and then we got decentralized, right? And then everybody got a laptop. And then going to the Internet of Things, and the IIoT, it’s like we went back to something that was centralized, and now we’re going back to the decentralized aspect, where we’re thinking, “Maybe devices need to be independent and intelligent out on the Edge.” It’s a really broad category. It just depends on what you’re looking to do in a network. FreeWave: Are there any projects or anything that you’re working on that you wanted to share? Greg: I’m constantly improving the usability of the ZumDash right now. And then, I don’t want to say too much, but we’re working on a couple of projects where customers want to implement this type of technology, but we’re not really ready to release names or corporate specifics about these projects. FreeWave: Do you see any other interesting trends or challenges facing the Industrial IoT app development space? Greg: There’s this paradigm that in the future everybody will be a software developer. And the reason that everybody isn’t a software developer today is

Know Before You Buy: How to Find Secure IoT Devices

As the number of IoT devices skyrockets, we are seeing the amazing powers of connected networks. Businesses are able to transform as they approach operations with smart, informed decisions. In the industrial sectors, IT decision makers have visibility into the OT networks and are now able to execute logic locally at the edge devices and transport critical data globally – enabling intelligent command and control of the network. We are starting to see glimpses of a connected world we never knew possible just a few years ago. As adoption of IoT rapidly expands, the Achilles Heel of these devices continues to be security – at least in the minds of end-users and consumers. A Recent report circulating around IoT news outlets states that 90 percent of consumers lack confidence in the security of IoT devices.  Yet more than half of these consumers own one or more IoT devices. The report, based on a survey conducted by Gemalto, revealed other concerning and somewhat astonishing statistics that have been reported in recent articles, including: 60 percent of respondents say their main fear is hackers taking control of their devices. 54 percent are concerned about personal information being accessed. 54 percent of the consumers surveyed said they own an IoT device but only 14 percent said they knew enough about how to protect it. Only 11 percent of manufacturers and service providers total IoT budget is spent on securing devices. Two thirds of organizations use encryption as their main means of security, with 62 percent encrypting data as soon as it hits the device and 59 percent as it leaves it. Only 50 percent of IoT companies have adopted a security-by-design approach. 92 percent of companies reported an increase in sales or product usage after devices have been made more secure, demonstrating a link between security and adoption 61 percent of businesses said regulation needs to be greater to specify who is responsible for security and data at each stage of its journey. 55 percent said safeguards are needed for ensuring non-compliance with security. 86 percent of businesses and 90 percent of consumers believe governments should handle regulation of the sector. Smart Device Selection Despite security concerns, adoption of IoT devices continues to rapidly expand. For industrial IoT (IIoT) networks, future business success is going to depend on connecting those edge networks in order optimize operations, drive production, reduce downtime, and create a safer work environment. When decision makers choose the IoT devices that will be deployed in their networks, it is critical to find products that meet the security and operating standards of the business. This can be determined through a careful evaluation of options. Are you looking to purchase IoT devices for your IIoT network? Consider carefully reviewing and answering these questions before you make your decision: What are your requirements? Must haves versus Nice to haves? Are there any regulatory considerations? What is the M2M communications technology controlling or automating? Is it essential that it operates without failure? What data is being collected and/or transmitted with this technology? Is it time sensitive and/or mission critical? What technology solutions have a proven track record for the applications being served? What external factors might impact the reliable transmission and receipt of critical data from one point to another? How does this M2M communications technology address challenges such as data encryption, network access control and signal interference? Can the vendor describe the security mechanisms? Can you understand them? Will this be secure even if everyone knows the security measures? (The right answer is yes, otherwise keep looking) Do we need this technology solution to be fail-safe, in order to prevent or eliminate catastrophic damage from occurring? What are the threat vectors I’m most concerned about? Is cyber security or physical security a greater concern for this deployment? What vulnerabilities have the Information Security community identified in the type or category of IIoT equipment I use? What is the right tradeoff between features, ease of use and security for my installation? Do I have a testing or evaluation plan in place? What ongoing improvements do I expect? While device security is going to be a lingering concern – especially as the lines between the IT and OT networks blur – companies have the power to prioritize security in their networks and make informed decisions when it comes to selecting their devices. Until there are more government guidelines in place, it is up to the IIoT decision maker to find these options in their quest for connectivity.

IIoT Edge Applications: Small SCADA

In a small SCADA environment, remote monitoring and automation are important tools for creating operational efficiency and ensuring cost-effective solution deployment. Real-time data in small SCADA environments enable programmable radios to act upon data at physical locations of the sensor or device. As such, processes can be remotely monitored and controlled without the Cloud. You still can send data to the Cloud, but only the data you need, when you need it. This frees up network bandwidth and minimizes latency significantly. In industries where even milliseconds count, this kind of Edge intelligence can mean the difference between ops in the red or ops in the black. We recently announced the release of our ZumDash application, which is hosted on our ZumIQ App Server, and can function agnostically across different I/O systems and networks. In a small SCADA environment, the ZumDash is ideal for real-time data aggregation and transmission. It is capable of running both at the Edge on hardware, as well as the Cloud, ensuring uninterrupted functionality. In an oil and gas setting, ZumDash can empower field operations managers via the intuitive dashboard display that can be customized to fit individual needs. Additionally, the app itself is powered by Node-RED programming, making it easy to configure on the fly, along with the ability receive real-time alerts for any operational needs like inspection, parts replacement, or troubleshooting. Essentially, having a remote monitoring and automation system powered by programmable Edge radios that can host proprietary third-party apps like ZumDash enable companies to more effectively deploy resources, saving time and money across the board. For any companies in the Industrial IoT space – or companies that rely on dispersed assets and asset management – intelligence at the Edge can be the true difference maker for your organization. For more information about the ZumDash Small SCADA application, please visit: https://www.freewave.com/zumiq-remote-access-control/ To learn more about the full ZumIQ solution, read case studies or download solutions briefs, please visit: https://www.freewave.com/zumiq/

ZumIQ Named Finalist in Control Engineering’s “Engineers’ Choice Awards”

Last week, Control Engineering Magazine announced our new ZumIQ App Server as a finalist in its Control Engineering 2018 Engineers’ Choice Awards program! This award opportunity is particularly exciting for FreeWave because along with the industry-wide respect that the magazine garners, the products themselves go through a fairly comprehensive review before being selected as a finalist. In late September, we officially announced the ZumIQ App Server, which combines 900 MHz wireless telemetry with the ability to program and host third-party applications, similar to a Linux-based Raspberry Pi embedded in an industrial Ethernet radio. One of the really cool (in our opinion!) facets of the ZumIQ is that Industrial IoT developers can program with any language that is compatible with a Linux kernel, including: Python, Java, C++, Node-RED and Node.js development environments. The ZumIQ App Server software comes pre-loaded with Node-RED, Python and MQTT for easy industrial IoT app development. For FreeWave, it really plants a flag in the ground for our ongoing goal of bringing true intelligence to the Edge. More importantly, it is a true testament to the engineering talent here that have bought into the company’s vision and put together an innovative, game-changing piece of hardware. We’d love to share a little more about the ZumIQ. To learn more, check out our ZumIQ Solutions Brief that can be downloaded here: https://www.freewave.com/zumiq-solution-brief-download/ If you like that, then we’d also love it if you headed over to the Control Engineering website and gave our ZumIQ a vote of confidence! You can find that link here: https://gspplatform.cfemedia.com/pe/productProfile/598e03dbe4b044ddd0c2ebbb It is an exciting time to be part of the FreeWave team, and part of the growth of Industrial IoT in general. The transformations over the last few years have been staggering, and the momentum and understanding of how these systems can improve business, quality of life and many other facets of our critical industries has only continued to grow.

Where is SCADA Headed?

With all the chatter around Industrial IoT (IIoT) and the disruption it brings to business operations, where does Supervisory Control and Data Acquisition (SCADA) technology for industrial organizations stand? Is it still relevant or will it be phased out? As businesses begin to recognize the benefits of modern technologies and deploy them across industrial networks to increase connectivity between the field and business office, this is a legitimate question. However, while organizations are working to modernize their operations, we are finding that SCADA is in no way becoming obsolete – at least for the foreseeable future. Instead, we are starting to see more modern approaches to SCADA. For example, there are now app-based small SCADA systems that are designed to fit modern network needs while putting less of a strain on technology budgets. Research also indicates that the SCADA industry will continue to drive forward.  According to a recent report, the global Supervisory Control and Data Acquisition market was valued at $7.5 billion in 2014. It is expected to reach $11 billion in 2021 and is anticipated to grow at a CAGR of 7.40 percent between 2016 and 2021. In the  Oil & Gas Market alone it is estimated that SCADA will be Worth $4.52 Billion by 2022. We Still Need SCADA Clearly, SCADA will remain an essential network component; however, we will likely begin to see modern technology have a transformative impact on SCADA. As industries increasingly adopt automation technologies to streamline monitoring and process control, technology providers are working on ways to better integrate SCADA and IIoT technologies into the network. With new programmable app server software platforms now available that combine 900 MHz RF-based technology with the ability to program and host third-party applications, there are clear signs that the SCADA systems of tomorrow will be designed to meet modern data and production demands. The newly available, app-based small SCADA systems that run on app server software platforms are already an indicator of a much more cost effective option than traditional SCADA. This gives smaller businesses an affordable way to manage data and control their network. Reducing Hardware to Drive ROI App Based Small SCADA solutions achieve the same critical SCADA functions of larger systems, including data management, logic execution and visualization – without the use of PLC-type hardware. The ZumDash Small SCADA App, for example, is programmed into FreeWave’s ZumLink radios to achieve collection, monitoring and control functionality.  Furthermore, it provides a “dashboard” with status and trend visualization from any web-based device. Using Node-RED for simple, easy programming, the app-based small SCADA system was designed with minimal CAPEX and OPEX. The result is a system that increases production, optimizes operations and mitigates the risk of a catastrophic event. And the beautiful thing about a programmable app-based SCADA system is that it is customizable to individual network needs at a fraction of the cost of a traditional SCADA setup. As technology and automation demands continue to drive innovation, we expect to see an increase in advanced approaches to SCADA. As we look towards the future of SCADA, we see IIoT enabling better operations and control of the network, faster ROI, safer operations and reduced downtime.

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.

Did you find what you were looking for?

Please let us know if you didn’t find what you were looking for so we can help make the site better for you.