IIoT Top News: CES 2016 & the Fate of IoT

All eyes appeared to be on the Consumer Electronics Show (CES) 2016 in Las Vegas since last week, as more than 3,600 companies unveiled the IoT and IIoT innovations we can all expect to see in the coming year. This year’s CES showcased plans to make the car a complete mobile office—with technology in place to allow Skype calls and the use of Microsoft 365 from the car. The other hot theme at CES was drones – not a surprise since these unmanned crafts have pulled us in like a tracker-beam to the mother ship. The autonomous ‘copter drone was one of the most impressive releases with the reality that the businessman of tomorrow doesn’t need a private jet, just a ‘copter drone and a smart phone. Now, as we watched all the products rolled out for their various purposes, it seems we have more connected things to add to an already expansive connected world. How will IoT connectivity technologies weather the storm as demand continues to skyrocket? According to IDC Research, IoT is about to take center stage by globally growing from $656 billion in 2014 to $1.7 trillion by 2020. The buzzwords of 2016 and beyond, IoT and IIoT specifically, simply show we are moving to an “everything is connected” environment. Naturally, once the luster of a shiny new thing wears off, we are tasked with the goal of protecting a critical piece of the IoT world – the data. Businesses need to make sure they are keeping information safe and secure. In this digital innovation age, plenty of industries (and therefore technologies) can’t afford a hack or cybersecurity breach at any time, for fear of customer loss.  Companies need to trust their digital information infrastructure will be not only be safe, but also high-performing – or they could very well risk extinction altogether. This week’s IIoT top news post takes another look at the fate of IIoT, as many new “connected things” hit the market this year. Hope you enjoy this week’s recap, and as always, tell us what we missed! Enterprise IoT Projects Will Be Costly, Lengthy and Vulnerable, Says Gartner (Computer Weekly) As the IIoT continues to inhabit day-to-day life, it’s not a surprise that, fifty percent of businesses will use some form of IoT systems by the year 2020. Gartner states that, “By 2020, addressing the black market and other compromises around IoT security will push overall security budgets up, with IoT costs expected to account for twenty percent of annual security budgets, compared with one percent in 2015.” Does Anyone Really Care About the Internet of Things? (Forbes) In this latest article by Forbes, Todd Hixon claims the term IoT was coined 17 years agoand he is still waiting for the killer ultimate app to come out. Hixon further suggests that when it comes to IoT, “Most of the time people prefer to ignore security and focus on more immediate needs and wants.” CES 2016 Takeaways: IoT Could Be the Death of Your Security Network (Network World) The real takeaway from CES 2016 is the overall lack of security for all these new IoT gadgets entering the market and how they fit into the IIoT ecosystem. Tom Henderson, from Network World believes the fate of IoT after CES is that “The damage, the damnation, the truculent total churl of the event was this: all of the new Internet of Thingies/IoT/KewlGear has no cohesive security strategy.” The Internet of Things: Hyped But Here to Stay (USA Today Tech) As the magnitude of connected things get ready for their clos-up, it would appear all the hype for IoT is here to stay. Edward Baig, with USA Today reports that, “You couldn’t walk around CES this week without hearing about or bumping into products related in some way to IoT, the tech industry’s inelegant way of describing all things connected.” What’s Next for the Internet of Things? (TECHCO) Sensors, software, electronic devices and M2M have taken over our daily lives. So, what’s next for IoT? Monoka Jha, with Tech.CO thinks the industry plan needs, “To use the Internet of Things optimally, we need to connect a device to different industries through varied media. For that to happen, the different industries need to have a common physical medium.”

IIoT Top News: 2015 News Round-Up

Let’s take a moment and appreciate the excitement 2015 brought for the IIoT: As we look back at the top articles from the year, we were intrigued to learn that cooperative utilities actually have the largest penetration of smart grid meters per percentage of customers, according to Greentech Media and the U.S. Energy Information Administration. It’s interesting to see the largest publicly-owned utility companies in the U.S. are not the leader in deploying smart meter systems. Another topic that caught our eye this year focused on big data initiatives and how they will improve operational efficiencies by the large-scale storage and transfer of volumes of information safely and securely. Companies don’t always see the value in updating information governance policies because there isn’t always a direct reward and no direct penalty for non-compliance. Tim Jennings, Ovum chief research officer, believes as big data continues to grow within the company infrastructure, it is time to consider the security, availability, and time spent storing data. Speaking of Big Data… It is hard to grasp the magnitude of data transferred throughout the cloud. Today, as big data goes to work, it is transforming industrial facilities, and as Forbes states, “they have grown increasingly complex and yes, every machine, every pipeline, every transmission point collects data ready to be read.” Of course, a 2015 news review would not be complete without at least one mention of unmanned systems. Whether the want/need was for industrial, commercial or government applications, the thing on everyone’s mind was how many cool ways this technology could be deployed in the future. While there were many examples to choose from, DARPA certainly caught a lot of attention from its new autonomous submarine-hunting ocean drone. Yes, you read that right! Finally, as we ease our way into 2016, we would like to share the rest of the top technology and IIoT stories from 2015. This year’s round-up highlights articles about: utilities, manufacturing, oil and gas, wireless, big data, security, drones and industry analyst perspectives. Hope you enjoy this week’s roundup, and as always, tell us what we missed! Energy Six Ways IoT Enables Innovation in the Energy Industry (IT World Canada) The energy industry is learning to use IoT to its advantage. IT World Canada details six ways IoT is enabling innovation and improving overall cost and efficiency for the industry. Yogi Schulz with IT World Canada believes that “Applying these IoT advances to a range of energy industry problems will be a major factor in helping the industry return to profitability in the new, lower commodity price environment through innovation based on better data.” Manufacturing Machine Learning (The Economist) As manufacturing becomes digitized, the industry has to adjust from being a product-focused world to a services market, with smart machines installed on the shop floor. The Economist believes that “For many manufacturers—in Germany and beyond—the principal sticking-point in making this digital leap is often cultural.” Manufacturing’s Digital Future (Industry Week) The digital future of manufacturing will incorporate the data analytics, cloud and many other wireless IoT solutions. Industry Week believes “many companies are leveraging interconnectivity to improve their own factory productivity, the factory-floor blocking and tackling of reducing downtime, cutting costs, reducing cycle time, improving OEE, etc.” Oil and Gas In the Digital Oilfield, “No Wires is a No-Brainer (World Oil) With the digital progression of our world, it seems only fitting we would find IoT in the oilfield. The question we must ask is: “Why, in 2015, has wireless I/O not overtaken hardwired infrastructure as the industry standard throughout the OFS sector?” Big Data Internet of Things Transforming Oil and Gas Operations (RigZone) Analytical movement has increased as the cost of oil continues to drop, therefore forcing the oil industry to gravitate toward more big data and IoT. It has been said, “the amount of data generated by oil and gas operations is starting to explode as real-time information from sensors is being collected at a rate of four milliseconds.” Wireless Tech Darpa’s RadioMap Detects RF Spectrum Congestion (GCN) An interconnected connected wireless world has created congested airways, thus making military communication and intelligence gathering requiring radio frequencies be managed. “RadioMap adds value to existing radios, jammers and other RF electronic equipment used by our military forces in the field,” said John Chapin, DARPA program manager. Big Data The Ethics of Big Data (Tech.Co) Big data has been defined as information that has been either unstructured or multi-structured as way to transform data into value. Once you have given value to the data, it is important to realize who owns the data. Tech.CO says that “when it comes to big data ethics, privacy is not necessarily dead, shared information can still have a reasonable degree of confidentially, but big data can still compromise identity and other information that customers and businesses prefer to be confidential.” Security IoT Security Needs to Stop Being an Afterthought (PCR) In the age of smart homes and smart devices it is time to improve the IoT security across the board. The Internet Society (ISOC) recently released a white paper stating, “the vendors who use IoT should take more responsibility for the security issues that can occur with IoT products.” Drones Robo-Bulldozers Guided By Drones Are Helping Ease Japan’s Labor Shortage (The Verge) Komatsu had to find a way to complete construction projects, as Japan gets closer to the 2020 Olympics. The aging population makes it hard to find anyone able to complete the work. The fix Komatsu has found is to offer a service called Smart Construction where, “a team of robotic vehicles scoops rock and pushes dirt without a human behind the wheel. They are guided in their work by a fleet of drones, which map the area in three dimensions and update the data in real time to track how the massive volumes of soil and cement are moving around the site.” Deforestation: British Firm Developing Tree-Planting Drone to Counter Industrial-Scale Logging (The Independent) A British engineering company is hoping to get international backing for an automated tree planting drone system. The purpose of these drone planting fleet’s, would be not

IIoT Top News: IIoT Predictions and Innovations for 2015-2016

As we inch our way closer to the New Year, we would like to take a moment and appreciate some of the technological advancements of 2015, as well as a few bold IIoT predictions for our connected-world enthusiasts. This medley of top news gives credit to our inventiveness, while highlighting a future forecast for IIoT. No matter your place in the world, drones have captured our attention. Precision Ag has changed the way farmers care for crops and animals. So naturally, more and more farmers would be jumping on the drone plan of action. Recently, the FAA has been putting a major kink in the farmer’s right to use drones in farming. The ruling states that if a farmer uses a drone for farm operations in any way, they must file with the FAA for a commercial exemption to use that technology legally. New permanent rules for drone usage could be in place next year from the FAA. So time will tell how the FAA’s ruling will impact the farmers and other commercial drone users in this country. Now it seems every car manufacturing company has grabbed ahold of the terms automation and autonomous. The next generation of cars needs to be self-driven, so the race is on to see what car company will own the rights first. A group in China raises that bar even higher by creating a self-driven car, they claim is operated solely by your mind. Just think one day in the near future you could climb into your car, click your heels together and merely think, “There’s no place like home,” and off the car would zoom. 2015, has been a good year for smart city development here in the U.S., with more than $160 million dollars in governmental funding allocated for this initiative. Gartner predicts that by 2016, the smart cities planned by the government will end up using 1.6 billion connected things. Twenty-four percent of IoT in 2016 will be in commercial security cameras, webcams and indoor LEDs, according to Gartner’s latest prediction. So, with everything becoming connected, IT departments are trying to stress the importance of securing this growing data collection. Don’t get us wrong IT departments are looking forward to the IoT expansion in 2016, but this level of increase in data could have a drastic impact on the networks, which is why IT managers surveyed suggest a new plan of action to combat the overwhelming IoT to the world we all know and love. This week concludes with three main messaging themes gained from this year’s Internet of Things World Forum (IoTWF). First, we must awaken and realize all the competitive advantage IoT can bring to businesses. Next, we must activate a realistic IoT deployment plan that will fit within our business needs. Last, we must accelerate the connection, with the assistance of service providers and developers. The IoT may change the way we function in this world, but the possibility of more innovation at our finger tips fuels our inventive minds forward. Hope you enjoy this week’s focus on IIoT predictions. As always tell us what we missed! Drone Use in Ag Increasing, But Lack of FAA Rules Slowing Technology (Capital Press) For every, good technological advancement there is a level of disruption expected as it thrusts itself into the market place. Drones are quickly becoming the must-have tool for the farming industry yet Capital Press points out that, “the Federal Aviation Administration’s lack of permanent rules for the technology is slowing its development.” Chinese University Develops a Headset That Lets You Drive a Car With Your Mind (Popular Mechanics) Autonomous cars appear to be the wave of the future. A group in China pushed the envelope even further by producing a car powered solely by your mind. They say the inspiration for this forward thinking technology can“bring more benefits to us, since we can better realize functions relating to brain controlling with the help of the driverless cars’ platform.” Smart Cities to Boost Internet of Things Market in 2016: (Gartner Chronicle Daily) The 2015, push for more smart cities is having an equally important impact on the number of connected things. According the Gartner, “The smart cities planned by the government will use almost 1.6 billion of connected things or Internet of Things (IoT) by 2016, an increase of 39 per cent from 2015.” Data Volumes and Network Stress Top IoT Concerns in 2016 (ITPro Portal) A group of IT managers were recently surveyed about the impact all things connected could have in 2016. The department managers stated that, “all this activity adds up to a huge number of devices with the overall average per individual UK organization expected to run into the thousands over the next 12 months. All these devices will be attached to a variety of networks resulting in increased stress on both existing and new networks.” The Internet of Things World Forum 2015 Highlights Three Themes (AME Info) This year’s Internet of Things World Forum highlighted three main themes throughout. The IoTWF focused on, “awaken, activate and accelerate the IoT solutions for your business.”  

Guest Post: IHS Predicts IIoT Cybersecurity Will Increasingly Be Implemented in Hardware

By Sam Lucero, Sr. Principal Analyst, M2M & IoT at IHS Technology IIoT & Cybersecurity As IIoT systems create ever more critical dependencies in plant, energy infrastructure, and transportation environments, developers and deploying organizations will turn to hardware-enabled cybersecurity to stave off proliferating cyberattacks. Although the use of secure processors in smartcard applications, such as bank cards, mobile phone SIM cards, and digital ID documents is common, IIoT developers have barely begun to adopt a hardware-enabled approach. Instead, “root of trust” technologies, such as secure key storage, cryptography, and secure boot, are handled in software on the main application processor of the device. IHS estimates that in 2015 only 9.8% of all secure processors shipped were intended for IoT applications (that is, all of IoT, not just IIoT). The challenge with this software-based approach is that security functions on the application processor share common memory resources with other functions and are therefore exposed and vulnerable to malicious attack. Hardware isolation reduces (but cannot completely eliminate) this exposure and therefore dramatically increases the security of the device. This increased security is fundamentally why bankcards, mobile phones, and now ePassports, have shifted to the use of hardware-based security. Looking Ahead A lingering question regarding the use of secure processors in IIoT applications is whether implementation will be in the form of a second coprocessor chip placed alongside the host application processor, or whether cybersecurity hardware intellectual property will be integrated directly into an application processor. (Integration of cybersecurity circuitry still achieves hardware isolation in contrast to software, although some physical security measures may become impractical.) Chip companies such as Atmel, NXP, and Renesas Electronics have adopted this integrated approach for at least some of their respective portfolios targeting the IoT. It remains to be see whether an integrated approach will be successful. While integration helps to reduce overall device bill-of-materials, it can increase cost and complexity for cybersecurity certification, relative to a “two-chip” solution. About Sam Lucero Sam Lucero is a seasoned industry analyst with over 14 years of experience analyzing telecommunications and networking technology markets. He has spent the last ten years assessing the markets for machine-to-machine (M2M) and Internet of Things (IoT) applications. Sam has established leading M2M market research programs and managed international teams of industry analysts. He has authored numerous reports, forecast databases, and topical articles covering various aspects of the M2M/IoT market opportunity and has been widely quoted in news and trade journals, from the New York Times and the Economist to CNET and Wireless Week. Furthermore, Sam has moderated, presented, and judged at a number of industry events, including CTIA and Connected World. In 2014 Sam was named one of six “Augural Analysts” for M2M by Connected World Magazine.

IIoT Bold Prediction Series Part 4: New Networking Protocol Changes IoT Connectivity

Before we move on to the next prediction in our IIoT Predictions series, let’s take a quick look back at the first three: A major security breach of an industrial SCADA system will bring new focus to IoT security. The government will become heavily involved in the regulation of IoT and IIoT devices. Predictive analytics will alter fundamental IT/OT practices. Part of the difficulty in procuring “predictions” for something like the Internet of Things is that the possibilities are truly endless. We know that “IoT” as a concept will increasingly touch on almost every single facet of our daily lives with each passing month, so part of the excitement is being attuned to the new concepts, technologies and thought leaders that seem to pop up near daily. It is an interesting time to be both a creator and user of technology! Today’s prediction, courtesy of Brad Gilbert, director of product management at FreeWave, continues our path toward the more technical side of the Industrial Internet of Things. We know that the technology will continue to progress, but what about the “internet” side of IoT – the enabler of the comprehensive connectivity we’ve come to expect? Prediction #4: Wireless Networking Protocol will Change the Way We Think about IoT Connectivity 802.11ah is a new wireless networking protocol that has the potential to enable a range of connectivity that was previously deemed improbable to obtain – greater sensor connectivity and the potential for even faster data transmission. It is scheduled to be released in mid-2016, and Brad predicts it will garner quick adoption. Here’s the why behind it: 802.11ah Unifies GHz and sub-GHz bands with a Wi-Fi protocol Reduces the need for protocol conversions and gateways Highly congested 2.4GHz band can now be offloaded to either 5GHz or now 900MHz The essence of these features is that they provide a greater diversity for device enablement by offering more networking and frequency band options. The unification of bands reduces the potential for interference and offloads traffic from the 2.4GHz band that is used for wide-range networking needs. 802.11ah Addresses long range communication and battery operation not met with existing 802.11 standards Much needed for IIoT applications, especially those in remote and hazardous locations Better RF propagation than 2.4GHz or 5GHz frequency bands In conjunction with band unification, the new protocol will enable the extension of high-speed connectivity to rural areas without overloading cell tower traffic. It will allow devices to use less battery power by predetermining wake and doze times, and by incorporating relay access points, it will allow networking stations to transmit data more quickly, reducing the overall wake time. Chipset availability The availability of chipsets (specifically SoC technology) will enhance data transmission even further by better managing integrated components and data flow to and from different networks and IoT enabled devices. What’s next? So far, most IIoT devices have been built with traditional band usage in mind. Introducing a new and efficient networking protocol will allow for a greater diversification of device capabilities, as well as a proliferation of sensor networks at a scale that would be unachievable with current standards.

IIoT Bold Prediction Series Part 3: Predictive Analytics Alters Fundamental IT/OT Practices

So far, our series of IIoT Bold Predictions for 2016 has focused on the concepts of IIoT security and government’s regulatory role in the development of IoT and IIoT devices. Today, we’re changing gears a bit, with a prediction from Scott Allen, FreeWave’s CMO, which focuses on the implementation of IIoT technology into big data practices to create real-time, data-driven intelligence. Prediction #3: Predictive Analytics Alters Fundamental IT/OT Practices Predictive analytics will change the nature of industrial communication systems and networks significantly over the next five years. Certain industrial sectors have long utilized machine-to-machine (M2M) technology, like manufacturing, utilities, and oil and gas, as the backbone to operations technology. However, as IIoT communication technology continues to improve at a rapid pace, these industries will begin implementing tech and business practices designed to create data synergy that will ultimately provide predictive analytics for better decision making. There are two elements at work that will push predictive analytics to the forefront of industrial communication systems. The first is the advancement of technology. Big data companies are making serious progress with comparing data-at-rest with data-in-motion as a strong basis for predicting outcomes with maximum accuracy. As the network infrastructure advances at the access layer in ways that allow analytic applications to be executed locally while communicating globally this trend will do nothing but accelerate. The second element that will drive change is the retiring or soon to be retiring workforce that drove the implementation and use of SCADA networks. This will create a knowledge gap that will require new technology to fill – and predictive analytics will be the one that fills that gap. Although an aging workforce is not unique to the IIoT sector, the transition will be pronounced and could, without incorporating predictive analytics practices, be accompanied by some significant growing pains. Looking Ahead Sensor-2-Server (S2S) technology will begin to ease the synergy between IIoT technology and big data. Ensuring accurate data transmission, collection and analysis in critical industries is an important step along the path to a connected world. As S2S technology proliferates, companies will see a significant impact on IT and OT practices, along with the ability to converge those two silos into more efficient and streamlined decision-making.

IT Security Dynamics and the Industrial IoT

The quest to understand production and operational factors, distribute this information to business systems and people within an organization, and directly improve business processes and profitability as a result is not new. In fact, it has been embraced by companies for decades. This collection of operational information for use in information or business systems is known as IT/OT convergence. Getting IT and OT systems to work together to maximize business efficiency — while avoiding negative consequences, risks and pitfalls in the process — is a tall task. However, thanks to new technologies, this process is becoming more practical and is creating the opportunities for huge economic benefits when these two disciplines are successfully integrated. But, how does this convergence affect the security paradigm in large, geographically dispersed enterprises? Let’s Talk Security Traditionally, companies have a corporate firewall that divides the corporate IT space from OT space. With an Internet of Things (IoT) communications network, there is a need to protect the sensors and new applications on the OT side. However, even if there is a secure communication link, if the individual devices that are connected on the OT side become compromised and the threat has access to that communication link, a hacker can push malicious data, cause denial of service (DoS), or introduce malware or viruses to the entire network. There are many of ways to run into problems on the IoT front if companies are not careful in their network design security implementation. On the IT side, corporate network security typically sees many threats. Those threats require significant attention, and consequently IT organizations have numerous options and tools to use, such as intrusion detection, log monitoring, network behavior monitoring, network inspections, whitelisting, firewalls, and more. The IT space has a much different attack surface than OT because with an IT network, the company can physically secure the building and control where the data goes in and out. Data escaping the building is relatively small in comparison to the OT space. WiFi that is leaking outside the building could be a vulnerability, but there are tools and ways to lock down that type of threat, and checkpoints where the IT department can analyze the traffic going through the network. In IT, bandwidth is plentiful and the network overhead associated with security is generally not a major factor. Considering Industrial IoT Networks IIoT networks, on the other hand, can span many miles with potentially hundreds of thousands of data points. An IIoT network likely consists of small embedded devices with long lifespans, making it very efficient. However, they are generally not like the Windows operating system, which is consistently conducting massive updates. Some embedded technologies don’t allow any updates, making it essential to carefully select the best devices for a network. Having thousands of these edge devices is where organizations will begin to see IT/OT convergence – many more points in the field where threats could be coming into the IT network. Industrial organizations today are creating a connected infrastructure with IP-enabled sensors or IP/IIoT-enabled Access Gateways. The data generated by sensors at an asset location can be valuable to more than just the central control system. This might mean M2M communication with sensors talking directly to each other. It may mean that multiple systems consume the live, real-time sensor data directly from the field. It may even mean that operators connect their sensors directly to the cloud or other back office systems. If there is a way to share critical data while addressing security issues that can help provide information to key data users, then that information becomes increasingly valuable. Security Through Obscurity is Not a Solution IIoT solutions often utilize the widely deployed security technologies from the Internet to avoid the custom, one-off solutions of past industrial security, when it was used at all. IP technology makes it easier to deploy and talk to sensors, but it also makes it easier for intruders to see and snoop on valuable data streams. Security through obscurity is not a solution. There are many common attack vectors for industrial devices that become even more relevant when considering the IIoT infrastructures and fully networked, geographically dispersed projects.

IIoT Top News: Manufacturing Today and Tomorrow

The age of manufacturing is moving past the dusty, oversized, broken-down warehouse located on the edge of town and into industrial 4.0. This new technological revolution is changing the way manufacturing operates within the digital sphere. Nowadays, manufacturers can track production status, machine functionality and operational flow with sensors, automation and wireless IIoT solutions. That’s why this week’s top news is dedicated to manufacturing of today and tomorrow, realizing this industry is evolving with the digital revolution. This is an exciting time for manufacturing, with more innovation integration happening across the board than in the last twenty years. As the IIoT starts to take center stage in many shop floors, new digital upgrades will require a new plan of action to deploy wireless pilot projects for automation and control. Now with the rise of smart machines in manufacturing, this industry has to shift from a product oriented world to a services market.  Sensors that tell you why it is not working or machines ordering products independently when supplies run low are all examples of this new industry 4.0 revolution in action. Naturally this technological movement began in Germany back in 2011, where twenty-two percent of their GDP comes from manufacturing, this compared to only twelve percent of the GDP in the US. Although, a recent report by Cisco finds that the majority of manufacturers are not capitalizing on this digital push. It is true most manufacturers do see the importance of the digital transformation on their shop floors, but the problem comes with the implementation of those new technologies without disrupting the current production process. As manufacturers digitize, it is vital to first find the correct infrastructure to implement the IIoT, and then to adapt a new model to incorporate the technology to the main business plan. So what does the future hold for manufacturing? As some companies adapt to this digital age, it is true manufacturing can now create digital prototypes, use 3D printers and operate remotely with sensors and wireless monitoring. Being able to collect data in real-time utilizing cloud-based IIoT solutions will be the key to succeeding in manufacturing going forward. Yet, according to Information Age 2016 top predictions, “Manufacturers will have to start thinking and acting more like software companies, leveraging the software applications they build into their products as a driver to reduce manufacturing costs, increase product innovation, and capture new revenue streams.” Furthermore, IoT, data analytics, cloud, and other wireless technologies have the potential to drastically improve manufacturing. The trick, as we march to the beat of this new technological revolution, will be to look at examples of how early adaptors have grasped the IIoT. It’s understandable with everyone shouting about the IIoT, it is easy to get overwhelmed. So stop thinking about all things connected and focus on what infrastructure will support your growing digital needs on the shop floor, and then your plan of action will seem a bit more manageable. Hope you enjoy this week’s reading. As always, tell us what we missed! Enabling Manufacturing Transformation with the IIoT (PTC) This push for IIoT is transforming the way manufacturing operates and functions as a whole. PTC suggests that, “As these innovations and pilot projects begin to emerge as broadly deployed best practices, the industry will start to see the emergence of business model transformation and the visions of Industries 4.0 and Smart Manufacturing will start to become a reality.” Machine Learning (The Economist) As manufacturing becomes digitized, the industry has to adjust from being a product focused world to a services market, with smart machines installed on the shop floor. The Economist believes that, “For many manufacturers—in Germany and beyond—the principal sticking-point in making this digital leap is often cultural.” Survey: Manufacturers’ Digital, Service Capabilities Lagging (Manufacturing.net) Manufacturers see the need for adding more digital components to the shop floor, but recent CISCO report finds that many manufacturers are still not capitalizing fully on the IIoT. “One challenge is on the technology side, making sure that the right infrastructure is provided,” said Dirk Slama of Bosch Software Innovations. “The second challenge I would see is more on the organizational level, to make sure that you somehow help your organization move towards these new business models.” The Factory Future (Manufacturing Today) The future of manufacturing will depend on the industries abilities to incorporate real-time results with their wireless IIoT solutions. Manufacturing Today has stated that, “More manufacturing will need to be able to harness all that data via the cloud to meet demands from customers and potentially legislators to fully track the entire lifecycle of their products—from creation to disposal of ideally recycling.” Manufacturing’s Digital Future (Industry Week) The digital future of manufacturing will incorporate the data analytics, cloud and many other wireless IoT solutions. Industry Week believes that, “Many companies are leveraging interconnectivity to improve their own factory productivity, the factory-floor blocking and tackling of reducing downtime, cutting costs, reducing cycle time, improving OEE, etc.

Today’s IIoT Security Challenges

For decades, Supervisory Control and Data Acquisition (SCADA) systems have played a significant role in industrial operations. Industries like oil and gas, electric power/smart grid, agriculture and utilities have implemented SCADA systems and networks to collect data and automate processes, and are always looking to automation systems for more effective ways to operate. The ability to collect more data from geographically dispersed field assets in remote locations has driven the need for enhanced communication technologies. With the emergence of continuously improving wireless machine-to-machine (M2M) technologies, networks have more access to data points than ever before. The number of sensors and data points collected will continue to rise dramatically with improved connectivity. This collected data helps operators improve operational decisions, save manpower and, in many instances, keep employees safe by avoiding dangerous environments. Today, industrial network operators are increasingly implementing end-to-end Internet Protocol (IP) connectivity or the Internet of Things (IoT), enabling more capabilities at the edge of these networks. This does not make SCADA systems obsolete by any means; it opens the door to greater possibilities of enabling new applications and analytics with every single data point being captured in the system. So What’s the Security Tradeoff? There are many implications for the concept of a completely connected enterprise in terms of network security. Critical infrastructure projects are only as reliable and secure as the technology serving them. Security, therefore, will ultimately be the limiting factor on how much IoT technology is deployed. With security, the traditional trade-off is either “easy to use” or “secure”— but not both. We often consider a third tradeoff as well of features, though in most cases, operators are not willing to trade off features, but it is certainly part of the equation. An operator striving for an Industrial IoT (IIoT) network must look at SCADA security, the convergence of Operations Technology (OT) and Information Technology (IT), and make a thorough assessment of what will allow them to achieve a secure data communications network. Some of the top security challenges for the IIoT today include: With more data being transported than ever before, it’s important not only to secure assets, but to secure the communication link itself. Traditionally, SCADA systems have been on the outside of a firewall from the corporate IT network. Newer SCADA systems that use Ethernet devices are more security focused with measures such as VPN, secure sockets, encryption and dedicated log-ins on the devices. One Final Thought There are many benefits to the concept of a completely connected IoT system, but this also implies more crossover between IT and OT systems. Companies need to prioritize security in their quest to create end points for all of their field assets. Some industries, like the smart grid, are already experiencing mandates that ensure a more cyber-secure network. With others, however, it is still up to the organization to make security a top priority.

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.

Did you find what you were looking for?

Please let us know if you didn’t find what you were looking for so we can help make the site better for you.