Remote Tank Level Monitoring and Automation

Industrial livestock operations have several critical needs in order to function smoothly, but perhaps most important is also the most fundamental: water. On remote sites, tank level monitoring and automation are tools that can essentially make or break the entire operation. In many of these situations, the needs of the site managers are different, so in order to maximize the technology being deployed to drive the automation process, they need to be able to customize the functionality. For operations using radio communication networks, those radios need to provide maximum programmability in order to host third party applications specific to the needs of the site managers. We recently finished a deployment that serves as an excellent case study for remote site tank monitoring deployments and included some interesting uses of radio programmability: The operator of a Rocky Mountain based livestock facility approached FreeWave to assist in remote data visualization of water tanks that are vital to its operations. The pain point was that the tank levels could only be observed visually on premise. After consideration of the terrain (mountainous, remote and big temperature swings), sensors and communications infrastructure, FreeWave engineers recommended ZumLink IPR with the Node-RED programming language for intelligent tank data visualization via browser or mobile device. The facility has minimal to zero staff most of the time. If a fault occurs such as a leak that prevents a tank from filling, the facility operators are unaware until they visually inspect the remote faulty tank, located a half mile from property headquarters. The operators wanted to reduce the number of trips to the tank facility and remotely monitor all tanks via web-based browser or mobile device. For the complete case study, visit this link: https://www.freewave.com/case-studies/remote-tank-monitoring-automation/.

Manufacturing in the Age of IIoT

Few industries can claim such a foundational impact on the United States as the manufacturing industry. Modern manufacturing began with the birth of the assembly line and the transformational effect it had on the automobile industry. Companies then adopted that approach to product manufacturing and logistics. The early phases of the next generation of manufacturing appeared as machine-to-machine (M2M) communication, a forbearer of the concept behind the Internet of Things (IoT). Eventually, IoT became so broad that specific designations were needed to differentiate between the consumer and industrial side of things, thus paving the way for the Industrial IoT (IIoT). Today, manufacturing companies, while often on the leading edge of automation technology, are still scrambling to adapt to the explosion of sensors, communication platforms, big data and high-speed analytics to maximize efficiency and future-proof their products or designs. Some companies are touting the idea of retrofitting – a concept that has existed for some time – but some plant engineers may be wary of the need for continual updating to a system that is bound to become irrelevant at some point. Still, the process can be relatively painless, and is quickly becoming necessary, as Plant Magazine notes: … Most food manufacturing and processing plants have motors powering essential equipment such as mixers, conveyors and packaging machines. But they’re just motors. They don’t play in the same league as other intelligent devices. With years of service to go, it’s difficult for plant managers to justify replacing motors that work just to make an upgrade with smart features. But motors can connect to the IIoT without a complete overhaul. Instead of investing in new, more intelligent/smart equipment, consider investing in sensors that provide similar functionality to connected devices. Smart sensors attach to almost any standard low-voltage induction motor. Sensor technology is sophisticated enough to be small, functional and energy efficient. For certain kinds of manufacturing plants, a complete overhaul may not be necessary, and a ‘simple’ retrofitting process might easily solve the first part of the problem. The second part of the problem, or challenge, is that along with smart hardware, plants also need the software and data processing capabilities to keep pace. Some plant engineers are solving these challenges by deploying programmable radios capable of hosting third-party applications so that the data can be transmitted in smaller, highly specific packets, making the transport both fast and easier to push into predictive analytics platforms. From there, software companies are building in the ability to process data in the cloud, essentially running all critical data and software operations through either a fog or cloud computing process. Cloud software services have the potential to be highly customizable based on the needs of the manufacturing plant. These technologies are good examples of the ongoing convergence between traditional information technology (IT) and operations technology (OT) needs in industrial markets. Currently, the manufacturing industry is sitting in an interesting spot: leaders in the M2M world, but still adapting to the IoT world. Where the industry ends up in the next 10 years could be a strong indicator of the economic and financial temperature of the domestic and international marketplaces.

7 Tips for OEMs to Improve SCADA Networking Communications

From remote field sensors to Supervisory Control and Data Acquisition (SCADA) and I/O modules, industrial wireless radios connect your device and sensor ecosystems with robust and reliable links. Furthermore, wireless data radio networking technology connected to I/O modules for SCADA applications have become faster, smarter and their firmware now easier to upgrade. More options and frequencies, including 2.4 GHz for short range I/O and 900MHz for long range data networking, continue to improve SCADA-based network communications for robotics, industrial automation, unmanned systems and heavy machinery. So what do Original Equipment Manufacturers (OEMs) need to know when deciding upon which technology to use? Below are seven tips for OEMs to consider when reviewing industrial wireless communication options.       1) Assess Technology Options for the SCADA Network Start first by identifying your needs, goals, and limitations. When it’s time to research technology options, observe what’s available today and what’s going to be available in the future, heeding the “buyer beware” saying. Communication products vary in many ways, and each manufacturer and/or technology has advantages and disadvantages. No single product—and likely not a single manufacturer—can meet all application needs. 2) Reduce Costs While some companies seek to continue to preserve existing investments of wired and wireless technologies, wireless options have clear advantages for SCADA systems. Most obviously, wireless installations reduce labor and material costs by avoiding hard-wiring remote assets. Speed of deployment adds savings. Wired systems can take days or weeks to be properly installed. Wireless networks generally require only the end points to be installed, saving substantial time and costs. Networks need to scale gracefully as the number of end points increases. After installation savings, scalability is the biggest advantage of wireless over hard-wiring, including slow integration into wired systems as it’s implemented. 3) Consider Hybrid Benefits Toss out any old perceptions. If you need mobile SCADA network access, find somebody that offers it. If you have a microwave tower place, use it. Piggyback slower licensed radio networks with faster 902-928 MHz frequency hopping, AES encrypted networks. Know that you can install I/O capable radios (analog and digital signal, 4 to 20 and 1 to 5) to relay contact closures or other data without adding a new Progammable Logic Controllder (PLC) or Remote Terminal Unit (RTU). 4) Maximize SCADA System Value With telemetry technologies, such as spread spectrum radios, the same radio used in RTUs can act as a slave device sending data back to the SCADA host, and as a repeater to other field devices or other RTUs. This allows almost limitless network expansion by using remote sites as a series of repeaters, and by using radios in the RTUs to poll the instrumentation. Polling the instrumentation creates a second network reporting wirelessly back to the RTU. This shorthaul network is the equivalent of a local area network (LAN). 5) Don’t Use a Proprietary SCADA System By using a non-proprietary SCADA system, users gain real-time access, control, and monitoring of their network (including all the devices and functions of their network). They can manage requirements of an ever-growing system allowing them to manage their network in real-time with fewer bodies and hours invested. Security and safety improves with better monitoring. For instance, some industrial systems don’t contain a process for monitoring the cathodic integrity for corrosion (like in water/wastewater and oil and gas) to avoid disaster. But with deployment of a wireless system, they can. They can begin by monitoring simple things, such as pump stations at wells, using I/O radios communicating back to the central SCADA system to get up-to-date information on the tanks’ or pipelines’ status. End users can more quickly resolve an emergency wirelessly, instead of manually. 6) Seek SCADA System Flexibility Advanced flexibility of radio communications offers benefits to new SCADA system deployments and upgrades performance of existing SCADA systems. For example, in water/wastewater industrial applications, there need to be generation/distribution, lift stations, system monitoring, and treatment facility systems in place (or planned) to meet the expanding growth of a community’s population and/or service areas to meet future requirements. Each year, many industries deploy more frequency hopping spread spectrum (FHSS) SCADA solutions to help monitor and manage critical infrastructure. Several manufacturers (including FreeWave Technologies) offer FHSS radios capable of retrieving data from remote locations. And although wireless IO (input/output) has been available, only recently have both capabilities been offered in one communication solution. 7) Seek Easy-to-Use SCADA Software OEMs implementing and using a SCADA network systems for data communications want a simplified, rapid setup and easy management of a network. That includes ability to manage multiple frequencies and multiple networks within one system. A centralized storage and management center provides easy access to system configuration and diagnostics data. Technicians in remote or harsh weather environments need robust reporting capabilities. Software like FreeWave’s ToolSuite can manage data communication diagnostics and configuration.

Connected Oil Fields in Peru

China National Petroleum Corporation (CNPC) is one of the largest energy companies in the world with operations in 28 countries. In May 2017, CNPC announced it would invest $2 billion in an oil and natural gas block in the southern part of Peru. Beyond the recent investment, CNPC has had a presence in Peru for more than 20 years, including oil fields in the northern portion of the country. To optimize operations in 2009, CNPC ran a pilot test in Piura, Peru to find the ideal communication solution for monitoring, collecting and transporting data. Piura is a coastal city located near the equator where the average temperatures hover around 95 degrees Fahrenheight. To connect the oil fields into the Supervisory Control and Data Acquisition (SCADA) system, CNPC needed a communication technology built to withstand harsh weather, such as high temperatures, large amounts of rain, wind and a variety of other environmental factors. The goal of the pilot was to have several test sites reporting to a gateway and then into a SCADA system to monitor several pumping devices and equipment including: Pump of Controller (POC), Pump Cavity Progressive (PCP), Balance Oil Recovery System (BORS) and plunger lift. FHSS for Oil and Gas In the Piura test case, the distances between links weren’t long, but depressions, canyons and steams made line-of-site (LOS) a challenge. CNPC, who tested multiple Machine-to-Machine (M2M) communication solutions in Piura, found that FreeWave’s Frequency Hopping Spread Spectrum (FHSS) technology solutions offered the most reliable connectivity in comparison to other solutions used during the test. FreeWave solutions also use repeaters that helped establish and maintain connectivity despite the lack of LOS. Additionally, the links were established easily and fast in comparison to other solutions that were a part of the test. During the entire three-month pilot, the FHSS-based M2M solutions did not lose communication or the ability to send data to the SCADA system. Industrially hardened, ruggedized FHSS technology has proven to be reliable in in many oil and gas installations around the world. As the Industrial IoT (IIoT) drives connectivity, we continue to see the demand for reliable communication links in environments like Piura that can have challenging conditions. FHSS technology offers not only a reliable, easy to install communication link, but it easily integrates into today’s modern IIoT networks. To get the full story about the test sites in Piura, read the case study: https://www.freewave.com/case-studies/china-national-petroleum-company/    

Industry 4.0 Top News Roundup

Industry 4.0, another term being batted around for the Industrial Internet of Things (IIoT) to explain the next-generation of industrial manufacturing and a new data exchange paradigm, is bleeding into multiple industry dialogues to describe the new landscape of how things are being made. With all the hype surrounding the idea of a “smart factory,” it seemed fitting to turn our attention towards highlighting our top news being reported on Industry 4.0. Industry 4.0: the urgency of data standardization By @Antoine_Rizk1 | Published on @ManufacturingGL “Sometimes presented as the new industrial revolution, Industry 4.0, primarily represents an advance in production means and practices. Characterized by interconnected machines and systems, it involves making production and supply chains smarter in order to improve efficiency in resource allocation and increase agility in production processes.”   Industrial Analytics Based On Internet Of Things Will Revolutionize Manufacturing By @LouisColumbus | Published on @Forbes “Industrial Analytics (IA) describes the collection, analysis and usage of data generated in industrial operations and throughout the entire product lifecycle, applicable to any company that is manufacturing and selling physical products. It involves traditional methods of data capture and statistical modeling. However, most of its future value will be enabled by advancements in connectivity (IoT) and improved methods for analyzing and interpreting data (Machine Learning).”   Drones will transform the way food is grown next year By @Harri8t | Published on @CNBC “Drones are transforming agriculture — giving farmers new tools to supervise crops and check on fields from the air — and 2017 will be be a pivotal year for adoption, say industry experts.”   US Manufacturers Too Slow to Adopt Industry 4.0: BCG Study By IW Staff | Published on @IndustryWeek “Nearly 90% of manufacturing leaders surveyed by BCG regarded adopting Industry 4.0 technologies as a way to improve productivity, but only about one in four see opportunities to use these advances to build new revenue streams. Many are pursuing isolated initiatives scattered throughout the company, BCG found in its new report, “Sprinting to Value in Industry 4.0,” without a clear vision and coordination from the top.”   Embracing ‘Industry 4.0’ By @alansmurray | Published on @FortuneMagazine “There’s a interesting new report out from BCG this morning on “Industry 4.0” – the German’s preferred term for how big data, cloud computing, sensors, advanced analytics, augmented reality and improved robotics are dramatically changing the world of manufacturing (known in GE-land as the “Industrial Internet”).” As we conclude another round of top news, we hope you were inspired and informed about the latest in Industry 4.0. It’s clear that business digitalization will only continue to add more technology, whether that be IoT, sensors, cloud computing and other solutions. Our job is to be ready and informed about how tomorrow’s technology could help enterprise digital transformation today.

Do You Have Intelligence at the Edge?

Smart devices have added a level of convenience to our lives that we couldn’t have imagined 20 or 30 years ago. Through applications we can manage our bank accounts, check email, listen to music, read the news, pay our bills — and that’s just the tipping point of what’s available today. Now, imagine a business being able to intelligently control the devices at the outermost edge of its communication network through third party applications that operate in a similar fashion to those used on our smartphones. With the Industrial Internet of Things (IIoT) emerging across markets, it is clear that we are heading toward a common goal of complete connectivity across a network – from Sensor-2-Server (S2S). The ability to collect data from any point in the network and transport it where it needs to go creates an opportunity for operational efficiencies driven by advanced data collection and analytics capabilities. Now, with the use of third party applications, it becomes easier to tie components together at the edge of the network and create actionable intelligence. ZumLink solutions are the industry’s first intelligent, programmable 900 MHz wireless network with the ability to connect third party applications. Think of ZumLink as the “smartphone” for industrial networks, allowing you to connect apps designed to meet demanding needs for collecting, protecting, transporting and controlling data from network end points all the way back to the server. Here are the specifics on what makes ZumLink unique: High Speed, Low Power, Long Range – 4Mbps Data Link Rate, 1 Watt output and 100-mile coverage area  Programmability – Supports Python and Java, third party applications –just like a smartphone Maximum Flexibility – Standard and user defined hop sets, sense before transmit, frequency hopping and single channel option and user channel masking Until Friday, you have a chance to win a network of ZumLink radios that will help you get a jump start on your future industrial communication technology solutions. Simply provide FreeWave with your use case example and why you should win. All entries must be received by August 19th. FreeWave will announce the winner on August 31st, selected based on submission (U.S. and Canada only). The winning network must be deployed by October 31st. In return for the free radio network, the winning candidate will be able to gain additional promotion of their installation and network implementation! Submit here for your chance to win: http://bit.ly/2awdmkC

The Glue that Holds Our “Connected” Dreams Together

Image courtesy of Flickr Creative Commons The visage of our “smart” or “connected” destiny is often presented to us in broad strokes: self-driving vehicles, connected homes, logistics, wearables – the list continues on with each piece of evolving and maturing technology. Smart cities have a bright future, and the application possibilities seem expansive, but often lost in the conversation is the technology that actually enables the connected world. Within a smart city – or even at a micro level – within one specific industry deploying smart technology, are a wide range of considerations: how much data are we transporting? How will we transport that data? How can we make our system intelligent? Where do we need to install these intelligence-driving platforms? How can we connect our data, operational technology and information technology to the necessary access points? Who/what has access to this data and control over these machines? These are only a few of the considerations that companies must address that are responsible for the industrial services driving cities and municipalities. While security is indeed a critical piece of this landscape, before any kind of connected or smart city can be achieved, the literal communication platform upon which that connectivity is deployed must first be implemented in a way that is not only compatible with current technology, but that will also be compatible with future technologies as well. From our perspective, there are five critical elements behind a smart city connected infrastructure: Robust Cloud Services Infrastructure designed to support all consumers of smart city deliverables Core Network Architecture that can rapidly expand in bandwidth and reach Extended Access Layer network architecture that incorporates a wide range of wired and wireless technologies to reach every sensor and device or that needs to connect to the smart city infrastructure A wide range of reporting devices such as sensors, visibility devices and other end points that create the data that makes a smart city work Distributed intelligence technology that allows for local execution of applications at the access layer plus global communication of data/analytics and information While each one of these tools is important in its own right, there is a common, underlying thread that connects them: each facet depends on a robust, reliable and secure communication platform. For smart cities, these communication platforms must be capable of enabling multiple methods of connectivity, but most importantly, they must be able to provide industrial-strength Wi-Fi. Wireless connectivity is the backbone of communication between the sensors that power all facets of the connected industrial infrastructure and the big data transport that is critical to the analytics that power “smart” enterprise. Not all industrial Wi-Fi platforms are created equal, and one of the major questions facing the ongoing development of smart infrastructure centers on how to ensure that these networks are secure and compatible across multiple, and sometimes proprietary, technologies. This certainly opens up a veritable can of worms, including the idea of standardization, but without the driving force of reliable and robust communication technology, most smart city dreams will remain just that – a dream.

Internet of Things Expo: What to expect this week

The Internet of Things (IoT) is essential for both enterprise and personal, everyday use. Leading research firms agree that IoT will experience an unbelievable boom, possibly into the tens of billion devices by 2020 as computers, smartphones and sensors all require connectivity. This week’s Things Expo is a SYS-CON Media annual event, designed to help make sure your enterprise is IoT-ready with 80 breakout sessions focusing on many aspects of IoT, including big data’s use with predictive analytics, smart grid and Industrial IoT (IIoT), wearables, identity in IoT and modem data centers, among many other tracks. Here is a sneak peek at keynote Internet of Things Expo speaker Chris Matthieu. Also…Check out this clip of a Things Expo Power Panel It is going to be an action-packed three days of IoT information dumps from the experts. If you have the chance to be in New York this week, be sure to check out this conference and soak up some knowledge. Scott Allen, CMO of FreeWave, will be presenting “Sensor-2-Server: Intelligent Communication at the Access Layer” at ThingsExpo on Tuesday, June 7th from 4:40 – 5:15p.m. EDT. (http://www.cloudcomputingexpo.com/event/session/3238).  Sensor-2-Server™ (S2S™) intelligent communications for the access layer can collect and transport the data that supports higher-level analytics. As IoT becomes adopted by industrial markets, there is going to be an increased demand for video, voice, data and sensor data communication from the outermost layer of the network. Let us know what you think. Which aspects of IoT are most interesting to you? What needs more coverage and information?

IIoT + S2S = Industrial Innovation at the Access Layer

The Industrial Internet of Things (IIoT) is moving at a rapid pace towards a higher intelligence platform to help collect, protect, transport and control data at scale from a myriad of sources. The access layer in the IT landscape is now particularly becoming an innovative technology environment with many new sensory solutions available to bring intelligence back to the core systems and analytics engines. Another area to consider when discussing IIoT are the individuals working with these technologies today, tomorrow and in the future. To start, the younger/millennial generation is entering the workforce in droves and is arguably the first generation open to big data integration and as part of IoT application solutions. Now that IT and Operations personnel work closer together than ever before, there is a need to be able to share the sensor data across the access layer. On the other hand, the older generation is trusting of the SCADA data systems they have been using for years, and are slow at first to adapt to the new intelligence created in the access layer. How Does an Enterprise Address this Transition? One strategy is IT/OT convergence, which promotes a single view of an enterprise’s information. Process-management tools help ensure that every person, machine, sensor, switch and device in an organization has accurate information in the best form and at the right time. As OT products—for example, programmable logic controllers (PLCs) and remote terminal units (RTUs)—become more aligned with IT infrastructure and applications, getting OT information integrated efficiently with IT systems at a process level is difficult enough for many companies. Getting IT and OT systems to work together to maximize business efficiency — while avoiding negative consequences, risks and pitfalls in the process —makes the task more challenging. However, thanks to new technologies, this process is becoming more practical and is creating the opportunities for huge economic benefits when these two disciplines are successfully integrated. Evolution of Sensor-2-Server (S2S)  (As described by Brandon Lewis, Technology Editor for IoT Design) S2S architectures define a method for communicating data collected by sensor platforms at the access layer of an IoT network back to servers at other layers, including but not limited to centralized servers in the core network. This type of architecture allows sensor data to be transmitted to points in the network that are best suited to the specific type of analysis, decision making, and control, which in an industrial deployment could be a SCADA controller located at the aggregation layer rather than a mass dump of heterogeneous data from hundreds or thousands of endpoints back to the core network. For critical IoT systems that require real-time or near-real-time analysis of sensor data, this more localized communications can speed decision cycles using data in motion rather than waiting to parse data at rest. Want to Learn More about S2S and the Future of Industrial IoT? For more information and a full discussion on S2S and the future of IIoT, please check out this recent interview with the IoT Roadshow and Scott Allen. You can also listen to the SoundCloud recording below!

XPONENTIAL Recap: Drones and so much more

New Orleans had its sights in the clouds for this year’s AUVSI XPONENTIAL conference. A leading national show for unmanned systems aimed to provide entertainment, education and networking opportunities for more than 8,000 industry leaders and professionals from 55 countries. XPONENTIAL focused this year on oil and gas; agriculture; energy and utilities; construction; and command and control defense applications. Starting off with a bang, national main stream media was drawn to those unmanned crafts in the sky, of all shapes and sizes headlining at this year’s XPONENTIAL. NBCs TODAY Show anchor Gabe Gutierrez captured a stroll through drone road, where every craft in a mile radius magically took to the sky as Gutierrez walked by. A common theme from this year was… The XPONENTIAL team consistently found ways to remind us all how intelligent robotics will continue to transform our business, travel and everyday security. This level of awareness was their way of educating everyone to embrace this technological shift. It’s about time for an FAA perspective! FAA Secretary Huerta found time during the action packed few days to sit down with Miles O’Brien to discuss trending topics and regulation over this coming year with more UAS registered and flying in the skies. Now let’s see what drones are charging into the agriculture scene this year! Farming will never be the same, now that Yamaha is creating a sprayer drone. This UAS wowed the crowds at XPONENTIAL in true rockstar fashion, reminding us all that the future of agriculture will be merged with technology. And it wouldn’t be proper to end this post without at least one brass band shot; we are in New Orleans, folks! This brass band gave the XPONENTIAL crowd a warm southern welcome as the show got under way! We also were thrilled to speak with the show organizers about how “IoT Rides on FreeWave Tech” in regards to debuting a beta version of new radio technology that leverages the Internet of Things movement to allow developers to program the product to perform functions previously unavailable on radios. Thanks to the XPONENTIAL 2016 Team and congratulations to all that made New Orleans a hit this year!

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.

Did you find what you were looking for?

Please let us know if you didn’t find what you were looking for so we can help make the site better for you.