Berg Insight: Bright Days Ahead For Wireless Automation

A recent report published by Berg Insight details the bright future ahead for Industrial IoT through the implementation of wireless automation technologies. Berg Insight senior analyst Johan Svanberg made note that higher levels of automation and IoT solutions enable “shorter lead times, lower inventories, increased throughput as well as more flexibility and the ability to respond faster to changing customer needs.” The wireless IoT device market is served by a multitude of players from various backgrounds including global automation solution providers, automation equipment and solution vendors, industrial communication specialists and IoT communication specialists. This new report from Berg Insight informs us that: 2015 estimate of wireless devices for industrial automation applications reached 4.8 million units worldwide. Wireless devices installed for industrial applications have a forecasted growth rate of 27.7 percent from 14.3 million connections at the end of 2015 to 62.0 million devices by 2021. Key Findings from Berg Insight: Wireless connectivity is instrumental in the Internet of Things era and the use of wireless solutions in industrial automation is increasing rapidly at all levels of automation systems. Industrial automation systems utilize wireless communication to connect remote and local facilities and equipment to increase operational efficiency. A wireless automation system contains a mix of network technologies, equipment and systems including enterprise and automation systems, network equipment, control devices and field devices. The most common wireless technologies in industrial automation include cellular, 802.11.x Wi-Fi, proprietary unlicensed ISM radio, Bluetooth, various LPWAN technologies and 802.15.4 based protocols such as WirelessHART, ISA100.11a and ZigBee. Berg Insight estimates that shipments of wireless devices for industrial automation applications, including both network and automation equipment, reached 4.8 million units worldwide in 2015. Growing at a compound annual growth rate of 25.1 percent, shipments are expected to reach 18.3 million by 2021. The installed base of wireless devices in industrial applications is forecasted to grow at a compound annual growth rate of 27.7 percent from 14.3 million connections at the end of 2015 to 62.0 million devices by 2021. Wi-Fi is widely used for backbone communications as well as in monitoring and control applications within factory automation where Industrial Ethernet has got a strong foothold. Bluetooth is also popular – often as a point-to-point wire-replacement between for example a mobile HMI solution and a field device or control unit. 802.15.4 networks are often used to connect wireless sensors and instrumentation in process automation. Cellular connectivity is typically used for backhaul communication between plants, connecting remote devices in long haul SCADA applications and for third party access to machinery and robots. LPWAN technologies are increasingly used in certain low data, long range applications. Most of the major vendors of wireless IoT devices in industrial automation offer a wide range of devices with various wireless technologies in order to support many different applications. Key Takeaways, According to Berg Insight: Companies are now deepening the integration between industrial automation systems and enterprise applications and the promise of IoT is getting more tangible by the day. Large multinational corporations are beginning to systematically develop and adopt best practices to maximise the benefits of IoT technology in every part of their organisations. IT/OT convergence, smart factories, Industry 4.0 and the Industrial Internet of Things are concepts which are part of the ongoing evolution of industrial automation. Innovation in sensors, wireless connectivity, collaborative robots, big data and cloud solutions along with seamless exchange of information between devices, systems and people paves the way for improved performance, flexibility and responsiveness throughout the enterprise value chain. For more information, read the full report from Berg Insight.

IIoT Top News: Machine Learning

Machine-to-machine (M2M) learning is an integral apart of the expanding world of Industrial IoT. Over the past few months we have given attention to manufacturing and its current digital disruption, but have failed to show the direct impact smart M2M and IoT technology is having on the industry. So, this week we are diving deeper into the term machine learning and how it connects to manufacturing both today and in the future. Before we get to our news round up let’s start by re-defining M2M, to ensure we are all on the same page with its purpose and meaning. Gartner has defined machine-2-machine communications as “something used for automated data transmission and measurement between mechanical or electronic devices.” Now, that we have defined M2M, its time to check out our top news round up for the week on how M2M applies to both manufacturing and IoT. 10 ways machine learning is revolutionizing manufacturing Machine learning is poised to improve manufacturing by streamlining the process of OT and IT, thus increasing efficiency and lowering overall operation costs. Louis Columbus at Forbes believes that “Every manufacturer has the potential to integrate machine learning into their operations and become more competitive by gaining predictive insights into production.”   IoT will recharge Machine Manufacturers Manufacturing can look to software companies as an example of how IoT can implement creating a smarter M2M network. Timothy Chou with CFO.com writes, “Today, manufacturers of machines — whether seed drills, chillers, or CT scanners — can leverage the path paved by the software product companies through three new business models: service and support; assisted services and machine-as-a-service.”   Climbing the IoT Mountain–by adding M2M to manufacturing Manufacturing is only at the beginning of its ascent into IoT and M2M, so there are many more bumps and obstacles a long the way for the industry to fully integrate. Ronnie Garrett with Supply & Demand Chain Executive describes IoT and M2M manufacturing implementation as, “Standing at the foot of Mount Everest, ready to climb the world’s tallest mountain. You know you want to get to the top but you aren’t really sure how you will get there or what obstacles you’ll encounter along the way.”   Cybersecurity is manufacturing’s biggest risk factor Manufacturing needs to continue to add M2M automation and big data analytics to the shop floor, but a threat to the overall industry is manifesting itself in the cybersecurity world. Ian Wright with Engineering.com informs writes, “A new report from BDO indicates that 92 percent of manufacturers cited cybersecurity concerns in their SEC disclosures this year. According to BDO, this represents a 44 percent increase compared to the first Manufacturing Risk Factor report in 2013.”   As we wrap up our top news for the week, we realize the need to fully implement advanced machine learning across the manufacturing world will take more than a simple flick of the wrist. With that said, we leave you with a cautionary tale of when automation goes wrong. It was recently discovered an airport in India had an sign translated with automation software which read, “eating carpet strictly prohibited” — of course this was not the translation they had meant to display. Regardless, as we move towards a fully integrated M2M world, we will have to adjust our equations depending our our intended outcome, much like the world is finding with the love/hate of language automation. Hope you have enjoyed this week’s top news, as always tell us your thoughts on M2M and how it might impact your world!

IIoT Top News: UAS Cleared for Takeoff

UAS, drones or unmanned aircraft, no matter what you call them — this was their week. Our news stream was flooded with updates on the newly announced rules and regulations for commercial UAS from the FAA. So, naturally we have dedicated this week’s top news round up to highlight some of our favorite UAS stories. Here is a quick recap on the new FAA rules for UAS USA TODAY has broken out the top five things you should know about the new FAA drone rules. Take a minute and get caught up on the basics. For example, the UAS operator must have their drone in sight at all times while in the air, and you still can’t fly at night. https://youtu.be/G6NAFIRZLBw Summary of New Commercial Drones Rules The wait is over, as many commercial UAS operators found out this week. John Goglia, with Forbes, breaks out the FAA new Part 107 rules which states, “It will eliminate many of the most cumbersome and expensive requirements currently imposed on commercial drone operators including the requirement for a so-called 333 exemption, a manned aircraft pilot’s license, a visual observer, the requirement to hold a certificate of authorization and the requirement to issue a notice to airmen before each flight.”   FAA Approves the use of Small Commercial Drones Michael Walton, with Government Technology, explains, “The FAA new UAS rules would effectively lift the lid on flights by other potential operators who have held off using the technology — real estate agents who want bird’s-eye videos of properties, ranchers who want to count cattle and a multitude of other businesses.”   At Long Last, New FAA Rules for Drones Air&Space Magazine tells us the best part of the new UAS rules is that “The FAA dropped its initial recommendation that would have required commercial UAV operators to hold a pilot’s license, a stipulation that experts feared would have stifled the booming drone industry, which is estimated to generate more than $82 billion and 100,000 jobs over the next decade.   We hope you have enjoyed this quick UAS roundup. Don’t worry, we aren’t heading into a Sci-fi movie yet; Amazon, Walmart and alike will still have to wait in the holding pattern for approval to utilize drones for domestic delivery purposes. Overall, though, it was a game-changing week for small commercial UAS user everywhere, and a small step in the right direction for drones to assist with all our future needs.

Fog Computing: Answering the IoT Challenge

Fog Computing is being touted as the data communication solution our Internet of Things (IoT) devices are asking for by bringing the power of cloud computing closer to the end user. The fact is, the number of connected devices is going to continue to grow exponentionally. In fact, Gartner predicts that by 2020 IoT will include 26 billion connected things. Consider the impact that amount of data collected and processed will have.   The Challenge Naturally, with billions of devices all connected to the cloud for manufacturing, oil and gas, utilities, municipalities and enterprise, to name a few, the data transmission and processing rate is bound to slow down – especially if the current cloud architecture is upheld. Some IoT devices use the cloud to store data long term, where other connected things send data to the cloud to be analyzed and sent back to the devicewith operational instructions. Ahmed Banafa with SemiWiki explains, “As dependence on our newly connected devices increases along with the benefits and uses of a maturing technology, the reliability of the gateways that make the IoT a functional reality must increase and make up-time a near guarantee.”   What is Fog Computing? Fog Computing is a term coined by Cisco, that offers a way to analyze the data closer to the IoT device, thus saving valuable milliseconds. It may be hard to believe, but a millisecond has the power to prevent a M2M line shut-down, increase the speed at which power is restored to utilities and prevent an oil rig from leaking, just to name a few. An easy way to visually understand where Fog Computing fits in our IoT world, is by looking at the diagram above. It clearly shows that Fog Computing hangs between the cloud and the device, much like the fog on an early San Francisco morning. Fog Computing operates at the network edge, extending the cloud capabilities closer to the source (IoT device). Each IoT connection works with what’s called Fog Nodes to digest the intelligent data and then coordinate operational next steps, whether that be acting directly and or transmitting results to the cloud. The diagram below covers the types of response times IoT devices face from both Fog Nodes and main cloud locations.   Fog Computing Brings Efficiency to Enterprise A recent report by Machina Research highlights the companies that pioneered Fog Computing and those poised to capitalize on the benefits in their near future. These companies are able to collect, protect, transport and control the data via IoT devices at the edge of the network, saving time and creating a more stream-line approach to sending and receiving data efficiently and more securely. Overall, as our need to connect explodes, we will not only need to think about IoT, but also the way in which intelligent data is processed from the critical infrastructure and back to the cloud. Fog Computing will continue to open more efficient channels across our IoT, as long as we allow it.

IoT Top News: Manufacturing Disruption

Industrial IoT continues to cause disruption; not just in manufacturing, but across many other industries as well. In the last few months we’ve been keeping a pulse on the state of digital transformation across the business landscape and have been discovering exciting new implementations of Industrial Internet of Things (IIoT). This week we’re highlighting the disruption Industrial IoT is instigating as product development and lifecycle management continues to evolve. Overcoming Three Key Barriers to Industrial IoT Industrial IoT has the potential to capture data in real-time, leverage big data analytics and streamline efficiency to name a few. So what’s hold back the industry? A major barrier has to do with culture of the operational technology (OT) organizations within the industry. The OT have a risk-averse way of thinking and see change as disruption, “Whereas IT is defined by constant change and innovation, that’s why it’s not unusual to see industrial automation systems in service for decades at a time with little or no change.”   Bringing Smart Technology to Old Factories Can be an Industrial-Sized Disruption It sounds amazing to have robotic arms working together with the Industrial IoT. The reality is manufacturing is being disrupted by the implementation of IIoT. Mary Catherine O’Connor with the Wall Street Journal reminds us that, “Often plant managers can’t tell which sensor will most accurately collect the data they want from a machine without a series of test runs—a time-consuming process.”   Product-Development Strategies in the IIoT Disruption The key to succeeding with IIoT disruption will be to focus on the new innovation of both product and software for the industry. Machine Design reminds us that, “IIoT is a disruptive force that will shape product-development trends over the next decade and beyond.”   Relying on CMM to Keep IIoT’s Disruption Positive All the talk up to this point has been about the negative disruptive impacts IIoT is having on the industry. IIoT has the ability to drastically change manufacturing with a positive level of disruption introduced on the shop-floor. According the the American Machinist positive disruption can happen, “By using coordinate measuring machinery (CMM), machine shops or other manufacturers are able to capture the precise details of the geometry or surface conditions of a workplace. Working within IIoT, those manufacturers then are able to share such data between machines, exchange information between facilities, or with customers or suppliers.” Now we would like to leave you with this quick excerpt from Kevin Ashton, a British technology pioneer who co-founded the Auto-ID Center at the Massachusetts Institute of Technology (MIT) and inventor of the term “the Internet of Things.”   How the Internet of Things Disruption Gains Traction – Extreme IoT We hope you have enjoyed this closer look at the disruption Industrial IoT is bringing to the table and what steps are being done to allow more implementation across the industry. Let’s us know what disruption you have seen with IIoT.

Internet of Things Expo: What to expect this week

The Internet of Things (IoT) is essential for both enterprise and personal, everyday use. Leading research firms agree that IoT will experience an unbelievable boom, possibly into the tens of billion devices by 2020 as computers, smartphones and sensors all require connectivity. This week’s Things Expo is a SYS-CON Media annual event, designed to help make sure your enterprise is IoT-ready with 80 breakout sessions focusing on many aspects of IoT, including big data’s use with predictive analytics, smart grid and Industrial IoT (IIoT), wearables, identity in IoT and modem data centers, among many other tracks. Here is a sneak peek at keynote Internet of Things Expo speaker Chris Matthieu. Also…Check out this clip of a Things Expo Power Panel It is going to be an action-packed three days of IoT information dumps from the experts. If you have the chance to be in New York this week, be sure to check out this conference and soak up some knowledge. Scott Allen, CMO of FreeWave, will be presenting “Sensor-2-Server: Intelligent Communication at the Access Layer” at ThingsExpo on Tuesday, June 7th from 4:40 – 5:15p.m. EDT. (http://www.cloudcomputingexpo.com/event/session/3238).  Sensor-2-Server™ (S2S™) intelligent communications for the access layer can collect and transport the data that supports higher-level analytics. As IoT becomes adopted by industrial markets, there is going to be an increased demand for video, voice, data and sensor data communication from the outermost layer of the network. Let us know what you think. Which aspects of IoT are most interesting to you? What needs more coverage and information?

IIoT + S2S = Industrial Innovation at the Access Layer

The Industrial Internet of Things (IIoT) is moving at a rapid pace towards a higher intelligence platform to help collect, protect, transport and control data at scale from a myriad of sources. The access layer in the IT landscape is now particularly becoming an innovative technology environment with many new sensory solutions available to bring intelligence back to the core systems and analytics engines. Another area to consider when discussing IIoT are the individuals working with these technologies today, tomorrow and in the future. To start, the younger/millennial generation is entering the workforce in droves and is arguably the first generation open to big data integration and as part of IoT application solutions. Now that IT and Operations personnel work closer together than ever before, there is a need to be able to share the sensor data across the access layer. On the other hand, the older generation is trusting of the SCADA data systems they have been using for years, and are slow at first to adapt to the new intelligence created in the access layer. How Does an Enterprise Address this Transition? One strategy is IT/OT convergence, which promotes a single view of an enterprise’s information. Process-management tools help ensure that every person, machine, sensor, switch and device in an organization has accurate information in the best form and at the right time. As OT products—for example, programmable logic controllers (PLCs) and remote terminal units (RTUs)—become more aligned with IT infrastructure and applications, getting OT information integrated efficiently with IT systems at a process level is difficult enough for many companies. Getting IT and OT systems to work together to maximize business efficiency — while avoiding negative consequences, risks and pitfalls in the process —makes the task more challenging. However, thanks to new technologies, this process is becoming more practical and is creating the opportunities for huge economic benefits when these two disciplines are successfully integrated. Evolution of Sensor-2-Server (S2S)  (As described by Brandon Lewis, Technology Editor for IoT Design) S2S architectures define a method for communicating data collected by sensor platforms at the access layer of an IoT network back to servers at other layers, including but not limited to centralized servers in the core network. This type of architecture allows sensor data to be transmitted to points in the network that are best suited to the specific type of analysis, decision making, and control, which in an industrial deployment could be a SCADA controller located at the aggregation layer rather than a mass dump of heterogeneous data from hundreds or thousands of endpoints back to the core network. For critical IoT systems that require real-time or near-real-time analysis of sensor data, this more localized communications can speed decision cycles using data in motion rather than waiting to parse data at rest. Want to Learn More about S2S and the Future of Industrial IoT? For more information and a full discussion on S2S and the future of IIoT, please check out this recent interview with the IoT Roadshow and Scott Allen. You can also listen to the SoundCloud recording below!

Drone World: Applying IIoT Applications

“Drone World” may seem a bit overboard, but the fact is, drones are here to stay. We’ve spent time in these pages looking at unique and innovative drone applications in industries like utilities, precision agriculture, and even lifeguarding. Today, in honor of Memorial Day, we would like to take a moment and honor those men and women serving in the armed forces, by highlighting interesting government drone technology uses. Drones ‘Shot Into The Sky’ By The U.S. Navy The BBC News informs us how these innovative instant flight drones could be used as a method of defense for ships at sea suddenly burdened by a swarm of enemy drones. This project is known as LOCUST and it aims to launch a swarm of drones at high speed. Elizabeth Quintana from the military think tank Rusi believes that, “Drones could be used to take out enemy swarms at sea.” Drones That Can Sniff Out Radiation The Nevada National Security Site (NNSS) officials have recently purchased two drones to be a view from the sky in case of an emergency to sniff out and detect signs of radiation. It will be important to use these unmanned aerial systems (UAS) in situations that are to dangerous for humans. Other Applications of Drones Drones aren’t just for the government anymore, in fact we are already starting to see the industries below finding ways to improve safety, service and efficiency with the implementation of drones. Emergency Response Enables immediate action, providing emergency response teams with fast, flexible visibility to assess critical situations. Utilities Safely allows for the quick inspection of high voltage power lines and wind turbines, helping mitigate worker risk and improve monitoring. Military & Defense Assisting with intelligent surveillance and reconnaissance missions to deliver timely, relevant, and assured information to thwart potential threats. Oil & Gas Protects and helps maintain extensive miles of pipeline covering large, remote areas that would otherwise require enormous amounts of time and resources. Agriculture Creates more efficient farms by monitoring inventory, growth, water and fertilizer levels, and crop health to facilitate production and increase yields. Public Safety Supporting firefighting operations by providing more up-to-date information at a lower cost, while reducing the number of responders in harm’s way. We hope you have enjoyed our quick drone world recap, and as always tell us what we missed. The next time you see a drone flying in the sky, think about all the possibilities that drone or fleet of drones could be providing.

Data Drought: Rural Australian Wi-Fi

Data drought in the rural Australian outback has illuminated the myriad problems stemming from a lack of Wi-Fi connectivity. Precision agriculture today requires broadband and high-speed connectivity to compete in the innovative global marketplace. Yet, many rural areas lack the sufficient infrastructure needed, offering only spotty or basic wireless internet solutions. In fact, there are a total of 135,000 Austrian farms over 400 million hectares, that create enough food to feed 80 million people, representing 13 percent of the country’s total export revenue. With that in mind, Australia can no long afford to ignore the demand to increase farming innovation, and so it has begun to look at possible solutions for the geographically complicated continent. A recent FaceBook survey conducted by the Better Internet for Rural, Regional and Remote Australia (BIRRR) found that 88 percent of Australians feel they don’t have services to meet all of their needs. Many living in the rural areas have voiced concerns over the noticeable “data drought,” but these concerns were often thought as a one-off individual problem. The BIRRR results have helped to bring to light just how massive this data drought issue is to farmers and others living in the rural areas of the country. Living in the bush has proven hard to find reliable ways to connect even basic Wi-Fi long enough for remote education, banking and innovative agriculture tools. It’s not for a lack of trying, as nearly every farmer has at least one smartphone. Many have been forced back to the city, even just to rent office space, so they are able to conduct business and digital transactions without interruptions. Is there a solution? The National Broadband Network (NBN) launched satellite Sky Muster, earlier this year with an expected customer capacity of 240,000. Farmers lucky enough to live in range of this satellite are  starting to see the benefits of real broadband connectivity. A second satellite is expected to launch later this year with the hope of reducing the data drought across the remote areas of the nation. Another possible solution has been presented by Prime Minister Malcolm Turnbull, who believes mobile technology is key to improving the agriculture and living conditions in the outback. Turnbull has promised to spend 60 million to improve mobile black spots in regional, rural and remote Australia. The AgForce vice-president and committee chair, Georgie Somerset recently said that the “increased investment in fixed wireless roll-out would also enable local Wi-Fi platforms, that can then support businesses and education in rural Queensland with high-speed reliable and affordable data.” It is important to note that, today’s IIoT technology marketplace has begun to produce exciting new solutions to address remote wi-fi needs similar to the challenges being faced in Australia today. The steps Australia takes to find a suitable solution to its connectivity problems can set the stage for solving similar challengs in remote areas across the globe.

IoT Top News: M2M Propels Machines

Time and again, those keeping a pulse on the Internet of Things (IoT) space frequently hear about the “rise of the machines.” Humanity is not only discovering fascinating ways to integrate machines into our daily lives, but also finding new uses for machines as well. How? Machines are now “internet-connected” just like the smartphones we carry around in our pockets. And this isn’t just on the commercial side with the likes of smart thermostats or connected vehicles – even tractors and oil and gas machinery are industrial examples of where new “things” are now on the digital network. In fact, there are more M2M or “machine-to-machine” communication devices on this planet than humans. As GSMA Intelligence reported in 2014, there are 7.2bn M2M devices versus 7.19bn humans. Stuart Taylor from Cisco also wrote a prediction that “The Internet of Things (IoT) is a world where up to 50 billion things (or devices) will be connected to the Internet by 2020; or, the equivalent of 6 devices for every person on the planet.” Realizing the major role M2M devices continue to have in our connected world, specifically as it relates to the advent of machine learning, it’s only natural to highlight the impact of machines and M2M in the past, present and future. The Machines are Coming: How M2M Spawned the Internet of Things In the digital world, M2M wireless solutions will work for us quietly, in the background solving all our day-to-day needs. John Kennedy with Silicon Republic reports that, “M2M is at the heart of the industrial internet of things (IIoT), powering smart factories that can be run remotely from a tablet computer, and smart buildings that monitor their environment and feed data back to the cloud.”   Is Machine Learning Over Hyped? In the now 24-hour news cycle, often the top news lingers around lighter topics. So how much hype should be given to machine learning (ML)? The Huffington Post respondent Scott Aaronson, theoretical computer scientist at MIT, seems to think that “There’s no doubt in my mind that people 30 years from now will agree with us about the central importance of ML, but which aspects of ML will they rage at us for ignoring, or laugh at us for obsessing about when we shouldn’t have?   Machine Learning: Demystifying Linear Regression and Feature Selection Machine learning needs to integrate domain knowledge in order to improve the quality of data collected from analysts. Josh Lewis with Computerworld thinks that, “Business people need to demand more from machine learning so they can connect data scientists’ work to relevant action.”   Machine Learning Examples Crop up for Data Center Management Data centers appear to be the perfect place for enterprises to implement machine learning to its fullest. Christopher Yetman, COO at Vantage Data said, “There are also sensors that generate data about air pressure, humidity, temperature and supply voltage and typically feed into a programmable logic controller.”   M2M Technology Driving Agriculture’s Industrialization  On a global front, M2M is driving agriculture’s industrialization in South Africa. IT News Africa informs us that, “Given the ability to automate many monitoring and control functions through intelligent devices, agriculture is a prime target for leveraging M2M capabilities.”   We hope you have enjoyed this week’s roundup, and as M2M connections continue to pile-up, we urge you to consider the plethora of commercial and industrial use cases that can benefit from these innovations.

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.