Manufacturing the Future

It’s no secret that the industrial revolution was directly born from the development of specialized machinery, thus providing the means of manufacturing a new path in history. Industrialization marked a societal shift through the development of these new systems, which also opened new ways of doing business. The principles and practices from these transformations continue to have a long-lasting ripple effect on the world today. It may come as a surprise that America manufactures more today than we ever have before in the country’s history. The advancements in manufacturing have spurred the next era of global growth and innovation. As a local manufacturer for the past 20 years in Boulder, Colorado, FreeWave has a unique understanding of how producing goods locally actually improves the bottom line, as compared to sending the work offshore. The Manufacturer is Evolving According to a major report from the McKinsey Global Institute, manufacturing continues to evolve in many ways. Some of the key findings to note were: Manufacturing’s role is changing. The way it contributes to the economy shifts as nations mature: in today’s advanced economies, manufacturing promotes innovation, productivity, and trade more than growth and employment. In these countries, manufacturing also has begun to consume more services and to rely more heavily on them to operate. Manufacturing is not monolithic. It is a diverse sector with five distinct groups of industries, each with specific drivers of success. Manufacturing is entering a dynamic new phase. As a new global consuming class emerges in developing nations, and innovations spark additional demand, global manufacturers will have substantial new opportunities—but in a much more uncertain environment. The report also highlights two very critical priorities for the future: “Companies have to build their R&D capabilities, as well as expertise in data analytics and product design. They will need qualified, computer-savvy factory workers and agile managers for complex global supply chains. In addition to supporting ongoing efforts to improve public education—particularly the teaching of math and analytical skills—policy makers must work with industry and educational institutions to ensure that skills learned in school fit the needs of employers.” IoT and Smart Manufacturing Whether it’s called smart manufacturing, Industry 4.0 or Industrial IoT, even the casual observer of the industrial landscape can see how manufacturing is changing. Being driven by new technologies and rapidly evolving customer demands manufacturers have needed to respond with mass customization – the concept of building flexibility into mass production. Through the adoption of the Internet of Things (IoT), factory and plant settings are becoming more outfitted with advanced instrumentation and being interconnected for a holistic approach to the modern assembly line. IoT provides the ability to gain valuable data off of all the “things” along the manufacturing process. From the condition of assets and equipment to quality and yield metrics, IoT provides live, real-time data from the manufacturing environment to our fingertips. In addition, new data sets (and perhaps more importantly data analytics) are changing the way we see our machines, our processes and our business operations. Analytics can identify patterns in the data, model behaviors of equipment, and predict failures based on a variety of variables that exist in manufacturing. As more factories and equipment are instrumented with the IoT, data volume will only grow larger. In Closing America is still making plenty of “things” and thanks to the latest advancements in technology, is still the leader in many of its fields of expertise. Below is a throwback video from PBS to remind us how the manufacturing sector continues to produce not just products, but ingenuity. Video courtesy of PBS.org

Do You Have Intelligence at the Edge?

Smart devices have added a level of convenience to our lives that we couldn’t have imagined 20 or 30 years ago. Through applications we can manage our bank accounts, check email, listen to music, read the news, pay our bills — and that’s just the tipping point of what’s available today. Now, imagine a business being able to intelligently control the devices at the outermost edge of its communication network through third party applications that operate in a similar fashion to those used on our smartphones. With the Industrial Internet of Things (IIoT) emerging across markets, it is clear that we are heading toward a common goal of complete connectivity across a network – from Sensor-2-Server (S2S). The ability to collect data from any point in the network and transport it where it needs to go creates an opportunity for operational efficiencies driven by advanced data collection and analytics capabilities. Now, with the use of third party applications, it becomes easier to tie components together at the edge of the network and create actionable intelligence. ZumLink solutions are the industry’s first intelligent, programmable 900 MHz wireless network with the ability to connect third party applications. Think of ZumLink as the “smartphone” for industrial networks, allowing you to connect apps designed to meet demanding needs for collecting, protecting, transporting and controlling data from network end points all the way back to the server. Here are the specifics on what makes ZumLink unique: High Speed, Low Power, Long Range – 4Mbps Data Link Rate, 1 Watt output and 100-mile coverage area  Programmability – Supports Python and Java, third party applications –just like a smartphone Maximum Flexibility – Standard and user defined hop sets, sense before transmit, frequency hopping and single channel option and user channel masking Until Friday, you have a chance to win a network of ZumLink radios that will help you get a jump start on your future industrial communication technology solutions. Simply provide FreeWave with your use case example and why you should win. All entries must be received by August 19th. FreeWave will announce the winner on August 31st, selected based on submission (U.S. and Canada only). The winning network must be deployed by October 31st. In return for the free radio network, the winning candidate will be able to gain additional promotion of their installation and network implementation! Submit here for your chance to win: http://bit.ly/2awdmkC

An Industrial IoT Anniversary

Wow, what a year! This post marks the one year anniversary of publishing Industrial IoT top news, trends and highlights, and we wanted to dedicate a recap post to our favorite articles throughout the past year. In particular, a lot of attention has been paid to the happenings in precision agriculture, oil and gas, unmanned systems, the smart grid, public utilities, manufacturing, machines and machine learning, fog computing, big data, sensor technology, wireless technology and cybersecurity, to name a few. Read on for the top 10 articles we’ve posted since last August and make sure to see the special bonus at the end! Precision Ag: Big data is precision agriculture’s best tool to feed the world By @LuxResearch | Published on @AgProfessionalhttp://www.agprofessional.com/news/big-data-precision-agriculture%E2%80%99s-best-tool-feed-world“Big data can be the most flexible tool for increasing the efficiency of food production through precision agriculture – a quantified approach to cultivation that uses sensing, input modulation, and data analytics to enhance the efficiency of agriculture.”  Oil and Gas: In the digital oil field, “no wires” is a no-brainerBy Zach Wertenberger @WPXEnergy | Published on @WorldOilhttp://www.worldoil.com/magazine/2015/september-2015/features/in-the-digital-oil-field-no-wires-is-a-no-brainer“Wireless technology plays an integral part in the day-to-day operations of virtually every industry on the planet. However, if you spent your time visiting most of the world’s oil fields, you wouldn’t believe that.Despite being a rather obvious fit with the inherent nature of the oilfield services sector (OFS), wireless I/O has been adopted by producers at a slow pace, with most continuing to rely upon miles and miles of fault-prone wire to connect onsite control centers with wellsite instrumentation.”  Smart Grid: Wireless Lifts Focus on Grid Resiliency By Brad Gilbert @freewavetech | Published on @POWERGRIDmaghttp://www.elp.com/articles/powergrid_international/print/volume-21/issue-6/features/wireless-lifts-focus-on-grid-resiliency.html“Industrial Internet of Things (IIoT) networking technology and wireless Machine-to-Machine (M2M) communications solutions are critical to the daily operations of an increasingly connected and industrial world. With a greater dependence on providing reliable and secure high-speed connectivity to personnel, smart devices, machinery and many other geographically dispersed assets, electric utility operators require powerful, yet flexible, communications solutions for their business demands.”  Utilities: Wastewater Treatment: Out of Sight, Out of Mind (Thanks to IIoT)By Scott Allen @S_Allen_IIoT | Published on @Ulitzerhttp://scottallen.ulitzer.com/node/3527211“Water is a crucial piece of any city’s – or country’s – infrastructure. The United States is fortunate to have some of safest drinking water in the world, for a number of reasons, one of which is its many water and wastewater treatment facilities.”  Manufacturing: Bringing Smart Technology to Old Factories Can Be Industrial-Size ChallengeBy @mcoc | Published on @wsjhttp://www.wsj.com/articles/bringing-smart-technology-to-old-factories-can-be-industrial-size-challenge-1465351322“It’s a tantalizing vision: Bright and shiny factories where robotic arms and conveyors never break down and production goals are never missed—all thanks to internet-connected sensors that monitor machine health and respond to the slightest supply or logistics hiccup.”  Machine Learning: 10 Ways Machine Learning is Revolutionizing ManufacturingBy @LouisColumbus | Published on @Forbeshttp://www.forbes.com/sites/louiscolumbus/2016/06/26/10-ways-machine-learning-is-revolutionizing-manufacturing/#3f10cd992d7f“Machine learning’s core technologies align well with the complex problems manufacturers face daily. From striving to keep supply chains operating efficiently to producing customized, built- to-order products on time, machine learning algorithms have the potential to bring greater predictive accuracy to every phase of production.”  Fog Computing: Why IoT Needs Fog ComputingBy @BanafaAhmed | Published on @bbvaOpenMindhttps://www.bbvaopenmind.com/en/why-iot-needs-fog-computing/“The Internet of Things (IoT) is one of the hottest mega-trends in technology – and for good reason , IoT deals with all the components of what we consider web 3.0 including Big Data Analytics, Cloud Computing and Mobile Computing.”  Sensors: The Army Wants to Implant Body Sensors into Combat SoldiersBy @tjenningsbrown | Published on @vocativehttp://www.vocativ.com/342014/army-body-sensors/“In the near future, American soldiers might all be implanted with a sensor before going to battle.The United States Department of Defense is interested in monitoring the health of soldiers in real-time. But wearable health trackers have faults and limitations. That’s why the Army Research Office and Defense Advanced Research Projects Agency have awarded $7.5 million to San Francisco-based Profusa to develop tissue-integrated health-monitoring sensors for service members.”  Wireless Tech: Industrial Wireless RevolutionBy Soliman A. Al-Walaie @Saudi_Aramco | Published on @ISA_Interchangehttps://www.isa.org/intech/20151001/“Wireless technology is an essential business enabler for the automation world. It has gained rapid acceptance in many industrial sectors because of its cost effectiveness, reliability, fast deployment, and flexibility. Over the past four decades, ultrahigh frequency (UHF) radios have been widely used for long-range supervisory control and data acquisition (SCADA) connectivity in the oil and gas and power and utility sectors.”  Cybersecurity: Navigating Industrial IoT risk and complexityBy @EStarkloff | Published on @AMDMaghttp://www.aerospacemanufacturinganddesign.com/article/amd1015-industrial-iot-complex-systems/“As massive networks of systems come online, they will need to communicate with each other and with the enterprise, often over vast distances. Both the systems and the communications need to be secure or millions of dollars in assets will be put at risk. One example of the need for security is on the smart utility grid, which is on the leading edge of the IIoT.” Bonus! Eliminate the cost of  your next IIoT deployment Now is the time to brave the digital transformation in your industry while you continue to future-proof your systems. All you need to do is submit a use case for your radio network for a chance to win a next generation industrial wireless IoT solution. All entries must be received by August 19th. FreeWave will announce the winner on August 31st chosen based on submission (US and Canada only). The winning network must be deployed by October 31st. In return for the free radio network, the winning candidate will be able to gain additional promotion of their installation and network implementation! Submit here for your chance to win: http://bit.ly/2awdmkC. Learn more about ZumLink.

App Development for the Industrial IoT

According to sources, a staggering 5.5 million new devices are connected daily to an increasingly crowded IoT space with an estimated 6.4 billion devices currently “connected.” By 2020, Gartner is predicting as much as 25 billion things will be connected. A lot of the value that both people and companies will derive from these devices heavily depends upon interoperability, which places an emphasis on app development. When we say IoT , the term”things,” generally focuses on a group of devices large or small that can be connected wirelessly by sensors to the internet, each other and or the main base station. Chunka Mui with Forbes believes that, “The Industrial Internet of Things (IoT) is a network of physical objects imbued with information and communications technologies. It brings together many of the key technologies that will make or break every information intensive company.”   App development for the Industrial IoT vs. consumer IoT We are use to finding new apps for our phones, smart homes and cars, but what about industrial applications? Contrary to what you might think, Industrial IoT app development surpasses the consumer side when it comes to compensation. In fact the Industrial IoT global market is projected to reach $319 billion dollars by 2020. Unlike their consumer counterparts, Industrial IoT may not come with out-of-the-box, ready to launch applications, and may require various modifications depending on the industry. The focus for Industrial development has been in translating big data in real-time with the use of Sensor-2-Server solutions. More reasons developers should jump on the Industrial IoT app train A few of the top reasons to develop applications for Industrial IoT are as follows: A chance to change your town–by assisting municipalities in becoming smarter cities; allowing you to create your vision–along with 18.5 million professional developers around the globe designing data capture analytics that can be translated in the digital ecosystem; and finally to open up the channel of revenues with the $235 billion dollars annually spent on IoT services. Today, a developer wanting to dive into this untapped market can start by leveraging the developer community sites with Github, Predix, or Intel’s hub to name a few. Jennifer Riggins with Programmable Web reminds us that, “The most important way to prepare yourself for the Industrial Internet of Things is to stay inquisitive.” After understanding the need for these complex industrial applications, the next challenge lies in cultivating best practices to replicate success within industry 4.0. Although the market is primed for the developer picking, it will still take trial and error, as it does with any new technology to fine tune more of an industrial application engine. As more resources (and opportunities) become available to the app development community, scalability is going to be the linchpin for enterprise deployments. Think of the value created if a municipality or energy company, for example, could deploy applications to hundreds of devices that reside at the outermost layer of an IT network.

The Glue that Holds Our “Connected” Dreams Together

Image courtesy of Flickr Creative Commons The visage of our “smart” or “connected” destiny is often presented to us in broad strokes: self-driving vehicles, connected homes, logistics, wearables – the list continues on with each piece of evolving and maturing technology. Smart cities have a bright future, and the application possibilities seem expansive, but often lost in the conversation is the technology that actually enables the connected world. Within a smart city – or even at a micro level – within one specific industry deploying smart technology, are a wide range of considerations: how much data are we transporting? How will we transport that data? How can we make our system intelligent? Where do we need to install these intelligence-driving platforms? How can we connect our data, operational technology and information technology to the necessary access points? Who/what has access to this data and control over these machines? These are only a few of the considerations that companies must address that are responsible for the industrial services driving cities and municipalities. While security is indeed a critical piece of this landscape, before any kind of connected or smart city can be achieved, the literal communication platform upon which that connectivity is deployed must first be implemented in a way that is not only compatible with current technology, but that will also be compatible with future technologies as well. From our perspective, there are five critical elements behind a smart city connected infrastructure: Robust Cloud Services Infrastructure designed to support all consumers of smart city deliverables Core Network Architecture that can rapidly expand in bandwidth and reach Extended Access Layer network architecture that incorporates a wide range of wired and wireless technologies to reach every sensor and device or that needs to connect to the smart city infrastructure A wide range of reporting devices such as sensors, visibility devices and other end points that create the data that makes a smart city work Distributed intelligence technology that allows for local execution of applications at the access layer plus global communication of data/analytics and information While each one of these tools is important in its own right, there is a common, underlying thread that connects them: each facet depends on a robust, reliable and secure communication platform. For smart cities, these communication platforms must be capable of enabling multiple methods of connectivity, but most importantly, they must be able to provide industrial-strength Wi-Fi. Wireless connectivity is the backbone of communication between the sensors that power all facets of the connected industrial infrastructure and the big data transport that is critical to the analytics that power “smart” enterprise. Not all industrial Wi-Fi platforms are created equal, and one of the major questions facing the ongoing development of smart infrastructure centers on how to ensure that these networks are secure and compatible across multiple, and sometimes proprietary, technologies. This certainly opens up a veritable can of worms, including the idea of standardization, but without the driving force of reliable and robust communication technology, most smart city dreams will remain just that – a dream.

Where is RF Technology for Oil and Gas Headed?

The entire landscape of the oil and gas industry is changing. Not only has the industry downturn forced operators to rethink their business models, but the RF technology supporting industry operations is quickly changing. It is more important than ever to make intelligent business decisions with the right technology in place. As a decision maker for your organization, you need to be aware of the technology that is pointing towards the future of automation and RF technology. Challenge yourself to think beyond basic command and control and picture a fully connected network – from Sensor-2-Server. Here’s a quick snapshot of the technology movement we are seeing in the oil and gas industry right now: The installed base of wireless Machine-to-Machine (M2M) devices is growing. More technology in the field allows operators to access more data from more sensor access points – on a grander scale than ever before. The ability to leverage Big Data supports intelligent decisions that will optimize business operations and cut down on expenses. The Industrial Internet of Things (IIoT) is the future of communication technology. With IIoT, data can be transported from its collection point to wherever it needs to go – anywhere in the network. This has sparked a convergence of OT and IT operations, driving RF technology networks closer to the concept of complete connectivity. With a fully connected network, decisions are made based on comprehensive data, which drives intelligent problem-solving. With that type of insight, you could better disperse your resources, leaving a positive impact on the organization for years to come. Sensor-2-Server (S2S) solutions that deliver intelligence to the access layer are critical to industry success. S2S solutions bring intelligence to the access layer, enabling edge devices to do more than simply transmit data. They support highly detailed data analysis such as predictive analytics. Imagine the operational decisions you could make with a complete set of data from the outermost edge of your network all the way back to the server. IoT App development is the next big thing. Programmable third-party applications are on the horizon of the wireless RF solutions market. These apps will support machine learning, distributed intelligence, predictive maintenance, and more at the edge of the network. Technology is being designed to enable these applications – which have the potential to lead the industry to the next frontier of RF technology.

IoT Top News: Distribution Intelligence

According to the U.S. Department of Energy, distribution intelligence refers to the part of the smart grid that addresses utility distribution systems – meaning the wires, switches and transformers connecting the utility substation to both the utility company and the end customer. These systems are designed to drastically improve the demand response times and overall efficiency of transferring electric power, thus enabling a fully controllable and flexible distribution system and giving field technicians the actionable knowledge to troubleshoot problem areas faster. As utility providers continue to move towards a digital and connected enterprise, the prospect of a self-healing power distribution system becomes extremely valuable – especially as electric power consumption continues to rise globally. That’s way this week’s round up is dedicated to distributing intelligence across one of the most mission-critical infrastructures on the planet – the power grid. State of Distribution Intelligence, per a Recent Smart Grid Report A smart grid survey of 70 U.S electric cooperatives found that, regardless of the challenges most have found a way to start incorporating smart grid technology across the board. Zpryme and the Rural Smart Grid Summit (RSGS) report that, “Nearly all electric cooperatives have some sort of smart grid effort. Many are at thestage of deploying multiple applications (31%) up from 21% last year. Pilot projects are also growing from 8% last year to 16% this year.”   We Now Have Hourly Data on the US Power Distribution System The U.S. Energy Information Administration (US EIA) can now collect data on electric supply, demand and flows on an hourly basis. CleanTechnica informs us that, “EIA’s U.S. Electric System Operating Data tool provides nearly real-time demand data, plus analysis and visualizations of hourly, daily, and weekly electricity supply and demand on a national and regional level for all of the 66 electric system balancing authoritiesthat make up the U.S. electric grid.”   Distribution Intelligence Starts with Proper Training India’s National Smart Grid Mission (NSGM) with USAID announced they will begin a series of utility personnel training programs designed to help educate workers on smart grid functionality and design. The Business Standard revealed, “The government has taken several proactive steps towards grid modernization, including the establishment of a Smart Grid Mission to plan and monitor the implementation of policies and programs related to Smart Grid activities in India.”   Cyber Attack Vulnerability in the Power Grid? We have all heard about a few of the big cyber attacks that have affected some big companies, but many don’t realize an attack on the electrical infrastructure could be crippling to our society. The Energy Collective unveiled a quiz to dispel some myths about the state of cybersecurity in the power grid. “Minimizing the risk is not just about training a network IT team. It’s about running a comprehensive and continuous scan of operational technology (OT)—the programmable logic controllers, the mobile devices, the supervisory control and data acquisition systems (SCADA), etc.—and then coordinating OT and IT teams with risk officers and crisis management experts to form a cohesive front capable of responding to an industrial cyber incident.” Perhaps the notion of distribution intelligence systems can help address and alleviate some of these concerns.   Most utilities are only starting on the road to true distribution intelligence, but the market is expected to boom in the coming years. With the advent of industrial IoT technologies and new regulatory factors, we could realize distribution intelligence in our power grid sooner than later. I hope you have enjoyed our weekly round up on distribution intelligence, and please be sure to leave your comments and questions below. BONUS ARTICLE The round up above is all about the smart grid and how to make it more efficient and resilient. Ever hear of a smart city? Smart cities are connected cities, and they work in conjunction with everything from IoT sensors to open data collection and smart streetlights to provide better services and better communication. Teena Maddox from Tech Republic wrote a great round up piece on six essential technologies that make the smart city of the future a reality today. Give it a read!  

Smart Grid: IoT’s Next Frontier

If smart grids across the world are headed towards an IoT frontier, what come’s next? According to a recent report, Ericsson estimated there will be 1.5 billion IoT devices adopted by the utility and energy industries as early as 2020. The rise of the smart grid seeks to tackle energy producers’ needs to direct power and resources as efficiently as possible. It’s not enough to know where all the utility lines are located, the modern digital age requires monitoring and sensors placed across all assets in the field, so that providers can relay actionable intelligence across the enterprise as quickly as possible. In the event of a power outage, for example, sensors can inform the field technicians where along the line the fault has happened, thus saving time on troubleshooting and enabling faster restoration of power to the customer base affected.   An example would be Florida Power & Lighting (FPL), who is in the process of installing 20,000 smart grid devices across their state. Already these devices are saving an estimated 100,000 visits from technicians, since these smart grid devices can automatically fix small outages automatically. Computer Business Review reports that, “The world’s traditional electrical network – simple and linear, with centralized energy production and passive consumption – is undergoing a transformation to a much more complex, interconnected, and interactive model: the Smart Grid. However, for this network to become intelligent, users will require connectivity, simplicity, and security. They will also need access to a reliable and safe energy source that guarantees optimal operation of their installations, infrastructures, and equipment.” Perhaps more advanced smart grid solutions comes with a price, as many early IoT adopters are finding out. Storing, transferring and relying mission-critical commands across an IP address does expose potential cybersecurity risks as information and remote controls move from Sensor-2-Server. Experts are saying it’s not if a cyber attack will happen, but when the smart grid will be hit. Despite the need to adopt new technologies within the evolving digital landscape, utilities must establish a holistic security plan to not only address physical security measures, but also the data transmission paradigm from each individual end point on the network and back to the corporate IT office. Security through obscurity is not a solution. There are many common attack vectors for industrial devices that become even more relevant when considering that smart grid infrastructures are becoming fully networked, geographically dispersed projects.

IoT Top News: A Sensor Driven World

Much of the world around us is becoming driven by sensors, where we are able to track and map numerous possibilities with countless M2M and IoT solutions. So, we wanted to highlight some of the trending use applications of sensors today. The Army is looking at installing sensors to their combat soldiers The Army is looking for a way to better track the health and well-being of their soldiers in combat, and current health fitness sensors have too many irregular findings. Jennings Brown with Vocativ informs us that “The United States Department of Defense is interested in monitoring the health of soldiers in real-time.”   Although it is interesting to see Army uses of sensors. One must ask how sensors impact the industry at large? IoT is responsible for propelling sensors further into our world. Recent findings from ABI Research show that you can’t have one without the other — meaning, as we continue to explore the numerous IoT and M2M solutions it is only natural that we also see a dramatic increase in sensors used across the board. Peter Clarke with EET Asia reports, “ABI Research reckons sensors and peripherals will be 65 percent of an installed base of 47 billion units by 2021, double the 2016 level.”   The latest IoT Sensors Market Report for 2015-2023 sheds light on the global growth of sensors. An increased demand for sensors is expected to impact the industrial and automotive IoT sectors according the the recent ReportBuyer’s IoT Sensors Market research. Electronic News has shared the latest  findings from the ReportBuyer’s IoT Sensors Market 2015-2023 report which states, ” There will be a number of opportunities for the global IoT sensors market. One such opportunity is the increasing development of ‘smart cities’ around the world. IoT sensors will need to be used in aspects such as smart meters, smart grids, intelligent traffic management systems and smart packing, among others.”   Sensors are being used in both industrial and consumer IoT applications across the board. As technology improves, it is now easier to create higher quality sensors for a fraction of the cost, opening the doors for more industrial and consumer IoT applications. Mary Catherine O’Connor with IoT Journal believes that with the growth of IoT sensor applications,  That means there is a big opportunity for systems integrators in this market. There may also be an opportunity for companies that develop their own sensor-integration capabilities. It will be fascinating to watch the market develop.”   With that said, we can’t forget to realize that implementation of any IoT sensors will require a sensor-2-server plan, that will ensure the data makes it safely in real-time to the intended end-user.

Machine Hackathon: DARPA Plays Cyber Capture the Flag

A machine hackathon is about to take on a whole new meaning as Defense Advanced Research Projects Agency (DRAPA) prepares to hold it’s first ever machine-only hackathon. With a specific focus on cybersecurity, this cyber version of Capture the Flag (CTF), is DARPA’s way of combating the onset of cyber attacks in real-time. DARPA’s normal approval process is lengthy; once a potential threat is recognized and a software solution has been created, it has to be tested and approved before it can be implemented, and by the time the software fix is ready to be used across the board, another threat looms on their horizon. Some of you might be asking, “What is DARPA and who are their finalists in this cyber challenge?” Not to worry, the short video below provides some background and context. The contest is truly a battle of the minds, as hacker teams try their hand at reverse-engineering software to seek out and find weakness in the system and fix those holes while attacking other machines at the same time. Those teams that are successful in both attacking and fixing holes capture the digital flag and win points in the ongoing process. This competition will take place in conjunction with the annual DEFCON, the longest running annual hacker competition. Before we start thinking that we’re living a modernized version of “Hackers,” there are a few more things to know. First, this is really a battle of software. The final teams were given a DARPA computer to code and must create a software platform to interact with the DARPA database. Once the competition begins, the teams will not be able to intervene if their software fails to see a weakness or is attacked by another team. The goal is to create an artificial intelligence (AI) software that is capable of responding in real-time to potential threats and weakness within its databases.   Wired has added this contest to their radar, saying, “DARPA has gone full Tron. It might feel more like a video game, than a hacking contest, as DARPA has arranged for a visual diagram to be displayed on the big screen, that will show each attack and from what machine the attack came from.” Whether you believe Wired or the other tech experts, this type of machine AI is hoping to turn the tables on the war on cyber safety. Instead of waiting for an attack to strike, DARPA’s intuitive software will attempt to seek out weakness autonomously giving the Defense Department the added edge it needs to prevent leaks in the system. This is another intriguing example of how machine learning is becoming integrated into so many facets of the world at-large. Whether you make your way to Las Vegas to witness the DARPA’s version of CTF or not, that fact is we continue to add more M2M and IoT solutions to our daily lives. It’s only natural we find new ways to have machines assist us.

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.