Seismic Shift in IIoT Monitoring

There’s been a seismic shift in monitoring earthquakes via the  Industrial Internet of Things (IIoT) with advanced Machine-to-Machine (M2M) technology have reshaped the industrial communication industry. Every device or machine along the network, even at the outermost edge, now has the opportunity to be fully-connected for automated collection and delivery of information. As Sensor-2-Server (S2S) communication technology evolves to keep up with the demand for this connectivity paradigm, new efficiencies are created and Big Data is available to drive actionable intelligence. Seismic Shift Data that Saves Lives The sheer quantity of available data, combined with the speed of automation can support mission critical applications that are designed to save lives. Research centers can leverage IoT networks to relay critical data in real-time from areas where earthquakes are a common threat to people living nearby. While natural events like earthquakes and volcanos are not avoidable or fully predictable, an IoT network can potentially help reduce the level of devastation through close, reliable seismic monitoring via highly sensitive and advanced sensor technology. S2S communications monitor and send data from remote areas where Earth changes are first detected, to the monitoring authorities who are closely tracking seismic activity. S2S solutions leveraged for early detection of these events can enable authorities to warn citizens in advance to take appropriate precautionary measures. When robust, rapid, real-time monitoring is combined with effective emergency communications, human casualties can be significantly decreased. Seismic Shift and the Ever Changing Landscape IoT has been adopted at such a rapid pace that the demand for modern, sophisticated communication technology is driving constant changes in remote, industrial communication networks that will further advance applications like seismic monitoring. These changes have clearly disrupted the traditional Supervisory Control and Data Acquisition (SCADA) market. While SCADA systems are not obsolete, industries like environmental monitoring will continue to leverage new technologies designed to help seismologists make more informed decisions than with just SCADA alone. Now, network operators can evolve and adapt their monitoring programs over time through the IoT with edge devices that allow third-party software applications to be deployed network-wide. This has not only opened new doors for software developers, but it opens up the opportunity for advancements in environmental monitoring to further improve natural event monitoring. Fast and accurate data transport from the sensor networks in seismic monitoring therefore requires robust and reliable technology that doesn’t fail in remote and sometimes harsh environments. RF technology, for example, is advancing to help field crews make intelligent decisions and closely monitor the elements that can help delivery early warning for natural events. Find us at JavaOne this Week

Top Industrial IoT News Roundup

There is a lot happening in the industrial IoT (IIoT) space lately, as evidenced by all the recent news announcements, analyst insights and business transactions occurring on the daily. Some say there is a foggy forecast for the industrial internet of things, mainly because the success of cloud computing must extend beyond data centers, but real world use cases should continue to pave the way. In some respects, perhaps it’s just the fact that the ROI from the IIoT is still in its infancy, but many are clamoring that a more standardized infrastructure is needed to help solve the unique complexities that IIoT presents. In this week’s IIoT news roundup, you’ll find a little bit of everything – from oil and gas and manufacturing to fog computing, drones and sensors. Dive in and see if you have any other articles that you think are worth adding! And don’t miss the bonus update at the end of the news roundup. Deloitte: End-to-End Automation Real Value of IIoT Technology By @KarenBoman | Published on @Rigzone “Industrial Internet of Things (IIoT) technologies such as machine learning and drones are now available, but the real value lies in linking these technologies together to allow for end-to-end automation, a Deloitte executive told attendees at the Internet of Things Oil and Gas Conference 2016 Wednesday in Houston.”   Is Now the Time to Apply Fog Computing to the Internet of Things? By Dr. Vladimir Krylov @Artezio | Published on @IoTEvolution “With fog computing, latency is minimized if one uses fog nodes for data analysis without sending it to the cloud. All event aggregation in this case has to be performed in the distributed architecture deployed in the network where devices (sensors) and fog nodes are located. Thus, fog architecture moves the capacity question from the cloud to the network implementation.”   Manufacturing firms investing in IIoT data analytics – even if other areas are slowing down By @James_T_Bourne | Published on @IoTTechNews “The research, the findings of which appear in the report ‘Data’s Big Impact on Manufacturing’, found that of the more than 200 North American manufacturing executives polled, 70% said investing in data analytics would lead to fewer equipment breakdowns, while less unscheduled downtime (68%), unscheduled maintenance (64%), and fewer supply chain management issues (60%) were also cited.”   Go Ahead, Fly a Tiny Drone. The Man Doesn’t Have to Know By @luxagraf | Published on @WIRED “THE WILD WEST days of drone flight came to end earlier this year when the FAA began requiring that pilots register their aircraft with the agency. If you want to use your Unmanned Aircraft System (as the FAA calls them) for anything remotely commercial, you’ll need to go a step further and pass a test.”   Could Optical Fibre Sensors Save Lives? By @loctier | Published on @euronews “This edition of Futuris looks at how optical fibre sensors could help monitor the stability of roads, buildings, bridges and other constructions – and save lives.”   Discovering Value in the Age of IIoT By @lasher64 | Published on @automationworld “The solutions of tomorrow will be much more integrated between implementation tiers on the plant floor to the enterprise and beyond. Therefore, it is imperative that these solutions give strong consideration to network architectures and cybersecurity. As we continue to move forward, you will hear more about operational technology (OT).”   IoT is not about radios; it’s all about data By Alan Carlton | Published on @NetworkWorld “The initial challenge for the Internet of Things (IoT) was how to provide physical connectivity of small and often remote devices to the Internet. This issue has basically been solved with the plethora of wireless connectivity solutions. The real challenge for IoT is data organization, sharing and search on an unprecedented scale.”   BONUS NEWS   This week, FreeWave announced a contest at a chance to win FreeWave’s award-winning WavePro WP201 shorthaul and Wi-Fi solution. Contest entrants must provide a high-level account of the application of the WavePro, along with a description of the need for the platform. Winners will be announced at the close of the entry period. To enter the contest, please visit: http://go.freewave.com/wavepro-network-giveaway.  Submissions are due by September 30!

Who Needs Rugged, Outdoor Wi-Fi Networks?

When we think about Wi-Fi, we tend to lean towards the idea of connections that allow us to access our mobile devices. With a Wi-Fi connection we can stream videos, access our apps, check email, work and basically manage our digital lives. In non-traditional settings, the need for outdoor Wi-Fi connectivity is increasing, but it is accompanied by some unique challenges. Outdoor Wi-Fi  Connectivity Industries that operate mostly outdoors are finding a greater need for Wi-Fi connectivity. Campgrounds are providing Wi-Fi as both an amenity and as a tracking and booking tool for managers and campers alike. Golf courses have deployed industrial-scale Wi-Fi networks to monitor irrigation, golfers and other assets throughout a course, and marinas are using Wi-Fi networks for both communication and vessel management needs. There has also been a strong uptick in the use of industrial Wi-Fi networking for security programs and disaster response. Companies can use  high-speed Voice, Video, Data and Sensor (VVDS) data transport as building blocks for a security network capable of real-time monitoring. These Wi-Fi solutions are especially ideal for video monitoring, as they provide the bandwidth necessary to transport large amounts of data. Disaster response has also been an ideal application for industrial-scale Wi-Fi. Often times, cell networks can get knocked out during environmental disasters, effectively eliminating a critical component for communication. Today, organizations can deploy these Wi-Fi platforms on vehicles or other response assets that can enable communications in emergency or disaster situations. For any industry with outdoor operations, assets will be exposed to the worst natural elements – extreme heat, freezing temperatures, heavy snow, strong wind, dust storms and more. The challenge is finding a shorthaul, Wi-Fi solution that is rugged and secure enough to withstand the elements, but also advanced enough to enable new types of high-speed, high throughput application solutions. Rugged Wi-Fi Communication Solutions There are solutions designed for robust, secure transport of VVDS information for the edge devices in industrial communication networks. These rugged, shorthaul communication networks are specifically designed for outdoor Wi-Fi connectivity and have proven reliability in extreme environmental conditions. These types of solutions are ideal for oil and gas, utilities, mining, power plants, municipalities, disaster recovery or any other type of industrial applications. They also suit innovative deployments at golf courses, marinas, campgrounds and other settings that require outdoor Wi-Fi connectivity. How would you like to have Wi-Fi connectivity for your own outdoor networks? FreeWave just launched a new contest and the winner will receive their own network of rugged, outdoor Wi-Fi solutions. Enter Today! Contest Closed Enter today for a chance to win FreeWave’s award-winning WavePro WP201shorthaul and Wi-Fi solution. Contest entrants must provide a high-level account of the application of the WavePro, along with a description of the need for the platform. Winners will be announced at the close of the entry period. To enter the contest, please visit http://go.freewave.com/wavepro-network-giveaway.  Submissions are due by September 30.

Thinking Outside the Box with Sensor-2-Server Applications

When we talk about Sensor-2-Server (S2S) applications, we tend to lean towards examples of common industrial communication networks for industries like oil and gas, utilities and municipalities. These application solutions typically incorporate the transfer of data from edge devices back to a specific server for use cases such as pump and tank monitoring or SCADA systems. However, as Machine-to-Machine (M2M) communications transform alongside the adoption of the Internet of Things(IoT), the types of applications that require connectivity at the edge are virtually endless. If we step back and look at the big picture, it is clear the entire landscape of technology is changing. With these changes we foresee the decline of standalone RF technology. Decision makers need Big Data in to make intelligent decisions that will transform their business operations and save them time and money. S2S communication networks are designed to address this challenge by driving intelligent transmissions from a specific location back to the appropriate server with the necessary intelligence to drive action for change. As technology evolves to meet industry demands, RF technology must adapt to meet new needs. We’re already seeing this happen in the industrially hardened, wireless communications industry. Some wireless IoT communication solutions providers are offering platforms to host third-party applications in addition to creating the communication links for devices. Sensor-2-Server Solution Along with this widespread technology change, we have begun to see new and exciting ways that modern RF technology solutions can be leveraged in an S2S network. Here are some nontraditional real-life examples of S2S applications: S2S communications to connect satellite communication dishes in remote locations where there is little to no cell coverage. The solutions extend communications and create a single POC for all of the remote locations. Monitoring cold storage food at distribution centers for a large US Supermarket chain where the cold storage warehouses are 500 feet X 500 feet and are located several hundred feet away from the monitoring room. RTK base station communications to improve data and correlation for an Electric Car manufacturer. Remote access to GPS Stations for improved data transfer in order to complete ocean mapping. Irrigation control on golf courses. For most industrial organizations there is a clear push towards complete connectivity from the sensors at the edge of the network all the way back to the central server. We often talk about data collection for familiar applications in oil and gas, utilities and smart cities. However, the reality of today’s technology transformation is that any industrial communication network, regardless of the industry, will likely need to connect its edge devices and eventually program its edge through third party applications in order to take the most cost effective approach and drive intelligent operational decisions.

All Aboard the IoT Railway

In many parts of the world, rail represents a major component of infrastructure – for the transportation of both humans and goods. In fact, railways are critical to some of the major industries like oil and gas, agriculture, and food refrigeration/transport. Much like those industries have, over the years, adopted automated, machine-to-machine (M2M) technology, railroads have similarly deployed more advanced technology over the years as well. Railways began the “automation” process by adding Automatic Equipment Identification (AEI) tags back as early as 1989. These sensors track the specific item tagged, but they have no way of knowing how the train is operating as a whole. Companies also began deploying RFID tags to track goods being transported along the different lines. The AEI sensors could provide information on the rail car and would interact with the various readers along the route. The additional sensors were great for location awareness, but still lacked the ability to monitor all the moving parts on the train. Still, with these two initial steps, the early stages of Internet of Things (IoT) technology began to come into focus for the railroad industry. IoT Railway Solution The rail industry needed a way to develop a more intelligent infrastructure that enabled Sensor-2-Server (S2S) data transmission via a network of Wi-Fi and voice, video, data and sensor control systems. Due to the massive amount of data collection a system like this would develop, railways are now developing a fully digital service that is directed toward centralized facilities capable of aggregating data from different sources and streams and analyzing that data in real-time. For instance, today, railroad sensors monitor everything from rail car and locomotive health, to track conditions, air temperatures, stress gauges and component conditions. Having a centralized system allows operators to take that data being collected  and use it to develop predictive maintenance practices; that is, the ability to predict when a section of rail or a specific component is in need of repair or near failure. Predictive maintenance is only one component of IoT integration for the rail industry, but it is one that can potentially transform practices across the board, ultimately saving companies time and money – valuable elements for an industry centered on logistics. Across the pond, the University of Huddersfield’s Institute of Railway Research has found that tracks can be monitored with inexpensive sensors set to operate by the vibrations of oncoming trains. According to the research, the sensors will still operate if one of the sensors is damaged, because of a built-in fail-safe. These sensors are projected to detect both approaching trains and the real-time conditions of the track. Adding an IoT network to trains can help improve safety and efficiency with traffic congestion, monitoring and control speed. Even the non-critical business operations have the ability to operate efficiently on the train with the help of modern sensors. Beyond rail sensor networks, there is also the consideration of the passengers as well. If railroads can implement Wi-Fi networks on passenger cars, passengers will be able to receive travel updates, railroad companies can develop specific apps for their travelers, and riders can enjoy the utility of internet in areas that previously lacked service. Although rail remains largely an industrial consideration in the United States, the growth of IoT technology available to the greater industry bodes well for the continued development of this infrastructure around the world.

Smart Golf Courses = A Hole in One!

Smart golf courses are coming to a green near you. A modern day golf course requires many things, including real-time monitoring for irrigation and pump systems, automated vehicle location capabilities for carts and players, and the ability to provide employees with the internet connectivity necessary to manage the sprawls of the course itself. As a result, golf course managers are turning toward some of the cutting edge Internet of Things solutions on the market to meet that demand. As far as preferred pastimes go, golf ranks relatively highly for young and old alike. In fact, according to the National Golf Foundation, there are more than 15,000 18-hole golf courses throughout the United States. The American Society of Golf Course Architects estimates that a full-size golf course would need up to 200 acres of usable land, which means that courses in the U.S. take up at least three million acres. By comparison, that’s nearly three times the size of the Grand Canyon National Park. With that in mind, the management of golf courses is a minor feat in advanced agricultural practices and logistics. Smart Golf Course Solution For one Colorado course, the smart golf course solution to its connectivity conundrum lay in the deployment of an industrial-scale Wi-Fi network capable of handling communication, accessibility and maintenance needs. Course managers selected a dual-band, mesh networking platform that provides Wi-Fi coverage in the necessary areas, and with the help of the provider, set up a network that strategically positioned the platforms so that devices and sensors could remain connected via the mesh networking capabilities as they moved from place to place. However, any outdoor Wi-Fi network does come along with its challenges. For example, another factor that golf courses need to consider when determining the best networking option is the weather. Although most courses are situated in areas that don’t typically draw extremely cold temperatures, many are consistently faced with hot or humid climates that can knock networks offline as the communication platforms succumb to the elements. The last thing any course manager wants is to have their communication network fail, especially if that impacts their customer experience. Adopting ruggedized outdoor networking and communications solutions means being confident that the platforms are designed to function without failure – even in areas with extreme weather events or consistently hot temperatures. Additionally, to ensure that the data being collected from irrigation and pump systems is being delivered in real-time allows grounds teams to monitor and predict when the systems are in need of maintenance, or when certain areas of the course are in greater need of water than others, for instance. Today, grounds crews can track this data via handheld devices that can quickly aggregate and analyze data, rather than spend time manually checking each individual service point. Although modern golf courses often look pristine to players and observers alike, upkeep and ongoing service requires constant attention. As these courses begin to deploy more advanced networking systems to become smart in its communication and monitoring practices, the ability for courses to streamline workflow and maintenance needs will only continue to grow.

Emergency Response From Sensor-2-Server

Emergency response agencies are adding Sensor-2-Server (S2S) communication technologies to their tool belt, thus changing the way our local municipalities operate. As we head in the direction of a more connected world through the Internet of Things (IoT), we see increased efficiencies within our cities and local government operations. For example, municipalities can leverage S2S technology for monitoring and control of their traffic management systems to improve flow of traffic to support community growth or pain points within the local traffic infrastructure. These Smart City types of applications also extend into emergency response. Large scale emergency situations and natural disasters often lead to disabled or overloaded cell towers and disconnected Wi-Fi. When all forms of communication are severed, first responders face the challenge of conducting rescue efforts with extremely limited visibility into identifying which locations require immediate help and conditions of the affected locations. If local government or municipalities leverage Smart City applications to stay online during emergency and disaster recovery situations, response times increase, risk decreases and lives can be saved. A Sensor-2-Server (S2S) solution robust enough to maintain communications during worst case scenarios will provide a mission critical communication link that keeps responders connected. Further, solutions that support voice, video, data and sensor (VVDS) information can aid in complete, accurate assessment during the emergency as well as detailed follow-up after emergencies and disasters are over. Finding a New Solution for Emergency Response Secure wireless communications are a key component to successful emergency response and disaster recovery for Smart Cities. With technology specifically built for harsh outdoor, industrial locations and proven to perform under the most extreme environmental conditions, local governments and municipalities can create emergency response and disaster recovery protocols that would significantly reduce collateral damage. Wireless shorthaul communications solutions with robust Wi-Fi links support VVDS, giving responders a substantial advantage during emergency situations. In a situation where every moment counts, having that connection could make the difference in saving someone’s life. Benefits of Leveraging S2S Solutions with Emergency Response Agencies Functioning even when power outages are plaguing a city, there are a number of ways a Sensor-2-Server type of network can be leveraged by the local government: ⇒ Reduce Risks Significantly reduce the risk of injury for firefighters and first responders. By leveraging video, responders can examine and assess damage after a weather-related incident without having to enter unsafe buildings or areas. ⇒ Assess the Situation Streamline the post disaster assessment by first responders from all directions and relay critical information to headquarters. By leveraging voice and video capabilities responders get an accurate assessment of a situation from every angle and create a faster, safer evaluation than a manual process. ⇒ Increase Response Time When communication networks are down, emergency crews can leverage the secure wireless edge network. Emergency crews can respond faster because messages and instructions are relayed via VVDS rather than manually. ⇒ Protected Data Keep unwanted parties out of the network. Leverage secure encryption capabilities to prevent data hijacking and increase network security. Some solutions will offer a secure, dedicated channel for emergency communications that does not interfere with tactical plans. When a municipality becomes a Smart City, first responders can be highly effective and are better able to protect themselves from the dangerous situations they face. As S2S communications shape the future of municipal communication networks, voice and video can be incorporated into the network. With this new, rich data, emergency management teams can enhance their emergency response protocol and improve emergency planning.

Friday Top 5 IIoT News Roundup

It’s time to nominate our Friday top five Industrial IoT news articles of the week. Much like the weather in Boulder this week, we couldn’t decide on just one vertical focus, so we cast a wide net of IoT topics. In this week’s roundup, you’ll find a splash of fog computing, manufacturing, smart grid, security and overall IoT updates. Dive in and see if you agree with our picks. Don’t miss the Friday bonus at the end of this short roundup. Making fog computing sensors clearly reliableBy @Patrick_Mannion | Published on @ednmagazinehttp://www.edn.com/design/sensors/4442602/Making-fog-computing-sensors-clearly-reliable“As fog computing rolls in, the onus is upon designers to figure out how much intelligence should be at each node of the system for optimal performance. This implies then that sensors will need to start being more intelligent, with some level of built-in processing, storage, and communications capability.”  Army needs wide-area electro-optical sensors for manned and unmanned aircraftBy @jkeller1959 | Published on @IntelligentAerohttp://www.intelligent-aerospace.com/articles/2016/08/ia-wami-sensors.html“Army researchers are interested in moderate-resolution persistent-surveillance electro-optical sensors that operate during the day and at night over large areas to detect vehicles and people on foot. Researchers want to develop a sensor that consists of an imaging sensor, as well as a storage and processing unit.”  Five essential IIoT DefinitionsBy @MMS_MattDanford | Published on @MMSOnlinehttp://www.mmsonline.com/blog/post/5-essential-iiot-definitions-“The idea is not just to exchange and collect data, but to act on that data to make things better. (One commonly cited example is a “smart” thermostat.) IIoT is the same concept applied to industry. Examples range from “smart” buildings and power grids to “smart” transportation networks. IIoT might initially take the form of a machine tool status monitoring system.”  What makes a grid smart?By David Shadle | Published on @tdworldmaghttp://tdworld.com/grid-opt-smart-grid/what-makes-grid-smart“My point, however, is that the critical consideration is not the number of sensors, controls or data storage components we add to our system when we decide to move ahead with smart grid applications. The focus also needs to be on mastering the integration of these systems, many times across traditional IT and OT lines, to allow them to achieve their potential for intelligence.”  Top ten security predictions through 2020By @Gartner_inc | Published on @Forbeshttp://www.forbes.com/sites/gartnergroup/2016/08/18/top-10-security-predictions-through-2020/#4d8ba8073cbe“Through 2018, more than 50% of Internet of Things (IoT) device manufacturers will not be able to address threats from weak authentication practices.”  Friday Bonus! FreeWave Technologies announces partnership with Solis Energy By @SolisEnergy and @freewavetech | Published on @SolarNovus http://www.solarnovus.com/freewave-technologies-announces-partnership-with-solis-energy_N10256.html “Both companies are excited about the partnership and are already working through high profile opportunities to take advantage of the growing demand for smart systems and industrial connectivity.”

Behind the Scenes: Airports Across the Country

Many of us have been in airports around the country a lot lately. Summer vacations are a time when families converge at our local airports, anxious to spend time with loved ones and get to their destinations for fun, relaxation and adventure. However, we tend to take for granted all that goes into running our airports, along with the safety and security required to ensure the smooth operation each airport requires. Plus, we generally only think about what is happening inside the airports, but the truth of the matter is, there is potentially more activity happening outside of the airport at any given time. From aircraft maintenance crews and air traffic controllers to airfreight handlers and runway security personnel, there is a slew of machines and people conducting airport operations outdoors that need to be coordinated and as efficient as possible. According to a 2010 report by the Bureau of Transportation Statistics, a total of 631,939,829 passengers boarded domestic flights in the United States that year. This averages to 1.73 million passengers flying per day. It’s mind-boggling to think how this number has increased since that time as it’s clear that general aviation airports of all sizes are an integral part of our National Aviation System. Many airports have aging facilities, shifting demands to accommodate the changes in the general aviation industry, and diminishing revenue sources. These trends coupled with limited staff and budgets have made it difficult to properly maintain the facilities beyond responding to immediate needs. Automator of Airports The automation of processes and industrial communications can help. Setting up an outdoor industrial wi-fi network is one way field managers at airports can ease the burden of maintaining a safe and efficient infrastructure. For instance, establishing a hardened and ruggedized commercial-grade wi-fi network around the perimeter of an airport not only creates a safe and secure enclosed zone, but, also provides a way for maintenance crews to monitor and ensure the overall outdoor field operations of the airport facility. This can be easily achieved through resilient wireless networks because they allow for easy and relatively inexpensive modification as outdoor airport infrastructures and policies change (which can be frequent). In addition, besides obvious benefits to airport maintenance crews, there are indeed FAA requirementsthat need to be adhered to for compliance – making it even more imperative that airport facility personnel find more effective ways of ensuring proper airport operations and safety procedures are maintained at all times. Some examples of how outdoor wi-fi networks can assist in a smoother, more automated airport infrastructure include: Establishing a communications link with all airport maintenance crew through VoIP, video and data so that all personnel are able to communicate with one another and send immediate notifications if/when needed – saving time, effort and money. Adhering to FAA mandates which require personnel to provide reports on outdoor lighting, runways, vehicles and the overall airport infrastructure three times per day. Great efficiencies can be obtained through automating these various tasks reducing the amount of time and labor needed to maintain, monitor and report these things. Installing communication devices on airport maintenance vehicles connects all of them so that personnel can notify proper authorities of outages through their tablets versus manually having to inform supervisors that action needs to be taken. These are just a few of the ways an industrial outdoor wi-fi network can help airports maintain a safe, secure and well-functioning infrastructure. So what will the future airports look like and how will they operate? If the current IoT landscape has shown us anything its that any manual process or operation that can be automated through the use of machines or smart devices eventually will be (automated). As airport field operations continue to be held to higher standards and increasingly rigid regulations, the faster they can adapt to the pressures of an on-demand economy, the better.

(Industrialized) IoT App Development

Has IoT app development begun to take the globe by storm? A few weeks ago we discussed the growing need for more third-party app creation for the Industrial IoT industry. This week, we dive deeper and focus on those early adopters of industrialized IoT app development and what industries these “bleeding edgers” are serving. We all know by now the number of connected things is projected to grow massivelyover the coming years. Injecting new software applications into the industrial IoT world creates even more monitoring, control and usage of devices and data at the edge. Some would call this influx of software with industrialized hardware a modern marriage. The manufacturing sector, for example, seems to have found a use for implementing next-generation hardware to improve and automate operations, especially along the assembly line. At the same time, cloud-based software solutions are being leveraged to improve data analytics, thus improving actionable intelligence in real-time. What’s more is this new environment is incentivizing industrial manufacturers to cultivate new business models as they are finding that solutions they have developed in-house are as valuable as the hardware they manufacture. By tracking the performance of manufactured products in the field, manufacturers gain faster feedback loops and insights from customers. For example, instead of waiting months or even years for performance feedback, the integration of cloud-based software and modern hardware provides manufacturers this information in what is approaching real-time. This allows them to respond quickly with fixes, advice or, when needed, replacement equipment. As we enter into uncharted territory for many in this new interoperable, connected tech world, we have to also consider the cybersecurity measures in place and how it will combat any vulnerabilities as the surge of new, industrialized software applications enter our critical infrastructures. Security must be manufactured into the product from the very beginning – this includes tamper-proof hardware, authentication protocols, data encryption and more. What’s Next? Big companies like AT&T and Microsoft are joining forces for the good of the developer. We all can agree software is taking hold of certain business operations, so it is only natural companies would seek an easy solution for enterprise to bring about this change. The industrial side may appear to move slower when it comes to implementation, but that is only because of the various moving parts – machine-to-machine (M2M) devices, sensors and wireless technologies – that must sync with precision without missing a beat. Software is the enabler of this interoperability. So what is the next step in this industrialized development? Jeff Dorsch with Semi Engineering believes that, “Industrial Internet of Things (IIoT) applications proliferate in critical infrastructure, such as the power grid and water supply, the importance of the underlying software and the availability of an open-source platform for app development is coming to the forefront.” This fully-functioning data driven ecosystem will have to decide if open or closed systems are the best for their needs. Google and Apple, for example, have provided internet enabled ecosystems of devices. The problem is that they are closed ecosystems that limit which devices and which data can speak to each other. If industrial players want to take advantage and accelerate their own digital transformations, market opportunities and revenue, then they must take a closer look at open and secure technologies and start innovating for IIoT today. So as we all start to dip our toes in the industrialized software development pond, be sure to consider how your desired outcome matches the factors of delivering business value – customer responsiveness, security, revenue generation and operational efficiency. All are important in and of themselves, but different business models drive different decision-making. Embracing the IIoT app development opportunity early on might prove to be the smartest investment from a competitive advantage standpoint – being able to answer the “why” question is what will eventually separate the high-performers from the rest.

Become a FreeWave Insider

Designed, manufactured and tested in the USA.

© 2024. FreeWave Technologies, Inc. All rights reserved.

HEADQUARTERS

5395 Pearl Parkway, Boulder, CO 80301

TOLL FREE

LOCAL

Designed, manufactured and tested in the USA.

© 2023 FreeWave Technologies, Inc. All rights reserved.