Smart Border Protection
Plans for “The Wall” at the U.S./Mexico border appear to be driving forward. Recent reports indicate that building the border protection wall could cost upwards of $22 Billion. However, news coverage suggests that there is a more cost-effective solution in using drones to create a ‘virtual wall.’ Time will tell whether the current administration will consider replacing all or parts of the physical wall with modern drone technology to intelligently monitor rural and desolate parts of the border. In fact, some are reporting that it’s a possibility. On the other hand, several companies have already been selected to build prototypes of the border wall. Perhaps the final solution will be some combination of both, as The Department of Homeland is actively seeking border monitoring solutions in drones for Border Patrol. Drones at the Border In 2014, it was reported that Predator drones were patrolling nearly half the U.S./Mexico border. These drones were used to monitor rural areas for illegal immigrants, human traffickers and drug cartels – covering parts of the border where there are no US Customs and Border Patrol (CPB) agents, camera towers, ground sensors or fences. The Predator drones used for these purposes were designed for the battlefield, and unfortunately a report from December 2014 found that they did not achieve the intended results. Today, The Department of Homeland Security is looking to use smaller drones with facial recognition as part of its Silicon Valley Innovation Program – a program created to, “cultivate relationships with technology innovators, particularly non-traditional performers, from small start-ups to large companies, investors, incubators, and accelerators.” A contractor solicitation notice that was issued last summer (and closed on April 27, 2017) by DHS requested specific requirements for these border patrol drones. According to NBC News, the Department of Homeland Security was “flooded with bids” for these smaller drones. Here’s a small sampling of what the solicitation was requesting (see the full solicitation for the detailed list of requirements): Functional across a variety of weather conditions and times of day Ability to detect the following items of interest within required detection range: humans traveling on foot (alone and in groups), humans traveling on animals (e.g., horseback), and moving ground conveyances (e.g., All Terrain Vehicles, motorcycles, automobiles, and trucks Easy to navigate and operate Sophisticated sensors, with advanced capabilities – such as infrared and facial recognition capabilities sUAS capabilities (sUAS typically applies to smaller consumer-grade drones under 55 pounds) Hypothetical natural language voice command system While the request includes a broad range of desired capabilities, an article in The Verge suggested that, “the greatest challenge facing contractors is how to stream data from the devices, since much of the border lacks conventional cellular service.” Connecting Where Cellular Can’t From a technology standpoint, consumer-grade drones for border patrol are going to need secure, reliable and rugged command-and-control (C2) links. There are a number of secure wireless data communications solutions available that enable reliable C2 links. These solutions have been trusted by the government and defense industry for years, offering secure, reliable links with more than 60 miles Line of Site (LOS). There are C2 solutions providers that have operated in unmanned systems for millions of flight hours in some of the harshest weather conditions without a single broken communication link. Drone manufacturers also should consider these types of C2 solutions because they offer secure wireless data communication by leveraging data encryption capabilities that adhere to FIPS and AES standards. Some non-cellular solutions are also proven to be reliable and secure in nature which further boosts the overall data security scheme. Frequency-hopping techniques, for example, leverage coordinated, rapid changes in radio frequencies that “hop” in the radio spectrum, evading detection and the potential of interference. Some wireless products also deliver multiple user-defined cryptography keys (as many as 32 user-defined keys in some cases), providing a more robust link security by allowing the automatic and frequent changing of cryptographic keys. As drones are deployed more frequently for mission critical operations at our borders, it will be imperative to leverage secure C2 links that can support modern data needs in real-time while keeping the links secure. With the comfort of these powerful C2 links, Border Patrol agents can effectively monitor, assess and act upon threats in the most efficient manner possible.
FreeWave at AUVSI Xponential – Booth #3142
AUVSI XPONENTIAL 2017 is just around the corner and we couldn’t be more excited! Unmanned systems from some of the industry’s leading technology providers will be on display, and we’re looking forward to putting our embedded systems solutions out there as well (booth #3142). It’s a potentially transformative time for the unmanned systems industry. As military spending budgets increase, along with the adoption of unmanned systems for air, land and water, manufacturers and operators will need rugged, reliable and secure C2 solutions with high-speed data transmission. Reliability and security are two extremely critical factors in the ongoing development of unmanned systems solutions, especially for commercial deployments. For years, the government and defense industry has been on the forefront of secure unmanned systems, but as the commercial sector begins to utilize unmanned technology, the ability to ensure secure command and control can be the difference between reliable industry operations and serious injury. Clearly, security considerations for unmanned systems are going to be an ongoing hot topic at XPONENTIAL and into the future. We have spent the past 20 years supplying secure, rugged and reliable embedded solutions for government and defense, precision agriculture and beyond, and as a result, we hold a firm belief that the unmanned systems solutions providers for the next generation need to be hyper-vigilant with regard to the industry. With that in mind, we will be offering demonstrations of our latest C2 solutions for unmanned systems at XPONENTIAL this year. Booth attendees will get a first-hand look at our solutions, offered in a small form factor ideal for drones and robotics that have logged more than 2.5 million flight hours without a single link failure (https://www.freewave.com/unmanned-systems-drones-robots/).
A ‘Heads Up’ on Drone Safety
We all know that what goes up must come down. In the case of drones falling out of the sky, hopefully your head isn’t in the collision path. Drones are becoming increasingly popular for commercial and recreational purposes. According to a recent FAA report, this has sparked an “increase in accidents resulting in blunt impact or laceration injuries to bystanders.” The report, released late last month, generated a fair share of news coverage. It examines the dangers of drone collisions with people on the ground, the risk of injury and ways to reduce those risks. The good news, and probably most newsworthy conclusion, is that if a small drone were to hypothetically fall from the sky and collide with your head, you probably won’t die. One of the tests conducted during the study included dropping a drone on the head of a crash test dummy. The drone used in the test represented a typical drone — a Phantom 3, which weighs about 2.7 pounds. Test results determined that a drone causes significantly less damage than a wood block or steel debris. Findings also showed that the “drag,” caused by air resistance slowed the drone down much more than the wood and steel. A USA Today article reported that while there was only a 0.01 to 0.03 percent chance of a serious head injury, but there was an 11-13 percent chance of a serious neck injury. While the risk of serious injury might be lower than expected, both drone manufacturers and operators of remotely piloted aircrafts can continue to actively take responsibility for the risks by operating from a preventative and safety-focused perspective. A combination of proper training, education and reliable, secure command and control links (C2) can lead each side to a safer drone environment. Knowing the Rules Groups have formed with commercial drone safety in mind. Know Before You Fly is an organization dedicated to educating drone operators on the FAA guidelines for operation. They also offer resources on how to safely and responsibly operate unmanned aircraft systems (UAS). The FAA report also names Academy of Model Aeronautics (AMA), Association of Unmanned Vehicle Systems International (AUVSI), and the FAA as groups dedicated to educating hobbyist and commercial UAS users on the important requirements for piloting UAS. New drone operators who leverage the assortment of educational tools available can help champion the pursuit of responsible drone operations. Building Drones with Reliability and Safety in Mind In addition to training and education from the operator perspective, when the right command-and-control (C2) solution is in place, drone operations can become much more safe and reliable. Secure wireless data communication solutions that leverage data encryption capabilities, adhering to FIPS and AES standards, are already heavily relied on for mission-critical government and defense applications. Additionally, certain types of wireless solutions, like Frequency Hopping Spread Spectrum Technologies (FHSS) are secure in their nature. For example, frequency-hopping techniques can leverage coordinated, rapid changes in radio frequencies that literally “hop” in the radio spectrum, thus evading detection and the potential of interference Some wireless products also can deliver multiple user-defined cryptography keys (as many as 32 user-defined keys in some cases), providing more robust link security by allowing the automatic and frequent changing of cryptographic keys. In addition to secure data, these solutions also offer distance. There are FHSS radio solutions that can transmit more than 60 miles Line-of-Sight (LOS). When the communication links are robust and prevent interference, they are much less likely to be jammed or disrupted, ultimately preventing drone performance issues (i.e., falling from the sky). This is a very important consideration because of the growing number of unmanned vehicles operating in industrial and commercial sectors today. With a secure and reliable wireless C2 link, these technical issues are substantially reduced. Drones have opened the door for many hobbyist and commercial opportunities, but that also means there are more inexperienced operators. If an operator educates themselves on the FAA guidelines and safety procedures when operating a drone, and the manufacturers build in a secure and reliable C2 link that works over long distances, then both are taking the steps to decrease drone-related injuries. Although the FAA report shows the risk of serious injury and death is low, manufacturers and operators still need to keep safety a top priority.
ZumLink Firmware Update 1.0.4.1
FreeWave announces the release of firmware version 1.0.4.1 for all ZumLink Enclosed Ethernet Radios (Z9-PE and Z9-PE-DEVKIT). This new firmware version includes improvements which are not backwards compatible in frequency hopping mode with the original firmware release (1.0.3.2) so it is required that all radios be upgraded to the same firmware version. FreeWave recommends that your radios get upgraded with the new firmware version to take advantage of improvements and additional features, including: IP Filtering – Prevents IP addresses not within the IP subnet from being transmitted. Repeater – Allows a single radio to repeat (store and forward) traffic from one radio to another. Terminal Server Activity Timeout – Provides a settable time that closes the port when no data is received through the socket connection for longer than the timeout period. Diagnostic Support Bundle – Generates a zip file containing all the configuration and diagnostics information when IP address followed by /support is typed in a web browser. You can download the new firmware version from the Support Section of the FreeWave website. Note that you must be logged into the Support Knowledge Base to access and download. A complete list of changes and improvements will be included in the updated Release Notes and User Manual which will also be found on the Support website. Please contact FreeWave Tech Support for more information or assistance.
British Antarctic Survey Leverages Ruggedized Data Transport

Antarctica inhabits a unique place in the human exploration mythos. The vast expanse of uninhabitable land twice the size of Australia has birthed legendary stories of human perseverance and cautionary tales about the indomitable force of nature. However, since those early years, Antarctica has become a rich research center for all different kinds of data collection – from climate change, to biology, to seismic and more. And although today there are many organizations with field stations running this data collection, the nature of its, well, nature still presents daily challenges that technology has had a hand in helping address. Can You Send Data Through Snow? British Antarctic Survey (BAS) – of recent Boaty McBoatface fame – has been collecting data from its field station network for more than 60 years. Over that time, BAS has become a global leader for polar science and polar operations, collecting data on sediments, ice cores, the polar atmosphere and the ever-changing ice shelves – all of which are vitally important for helping predict the climate of the future. To collect this data, BAS required a network that could reliably transmit it in what could be considered one of the harshest environments on the planet. This means deploying GPS equipment, motion and atmospheric sensors, radios and more that could stand up to the daily tests. In order to collect and transport the data in this harsh environment, BAS needed a ruggedized solution that could handle both the freezing temperatures (-58 degrees F in the winter), strong winds and snow accumulation. Additionally, the solution needed to be low power due to the region’s lack of power infrastructure. The Solution BAS found that FreeWave’s 900 MHz radios could handle this myriad of requirements. The organization deployed 19 radios across its network, each connected to a remote GPS station containing sensors that track the movement of the Brunt Ice Shelf near one of the primary research stations. The GPS sensors determine the Shelf’s position and dynamics before sending the data back to the station. There are several other specs that make the deployment of these radios operationally viable for British Antarctic Survey, but to find out more check out our case study with all the details: https://www.freewave.com/case-studies/british-antarctic-survey/!
IIoT Top News: Internet of Things Growth Continues at Dizzying Pace
The Industrial Internet of Things, or IIoT, has fundamentally transformed the way organizations not only conduct business in their current day-to-day operations, but also has changed the way businesses plan for the future. The explosive growth in data, and the corresponding business decisions driven by that data, is causing a massive ripple effect through the industry and is driving hyper-growth in software, hardware, cloud services, security and integration platforms. Here are some of the recent headlines in IIoT that are shaping the landscape. IIoT’s Growth Shows No Signs of Slowing A recent report released by ABI Research and published by Fierce Wireless forecasts that industrial manufacturing applications will generate more than $138 million this from cellular and satellite connectivity fees alone. Driving this massive fee generation is the expectation that the IIoT will exceed 53M installed connections in 2017. The largest marketplace for this activity is the Asian-Pacific region, where an additional 5 million connections are expected over this year. IIoT Security Concerns Increase While the IIoT is experiencing massive growth, new security concerns continue to arise. A new study from Tripwire published in IoT Tech News sought insight from 400 IT professionals who describe security as a “significant” part of their job. Of the respondents, over 50% say they do not feel prepared for security attacks that exploit unsecured IIoT devices. 94% of those same respondents believe that the IIoT exposes their organizations to increased vulnerability for cyber attacks. Robert Westervelt, security research manager at IDC, said: “The apparent contradiction of known risks and continued deployment demonstrates that security and operations need to coordinate on these issues. While IIoT may bring new challenges and risks, the fundamentals of security still apply. Organisations do not need to find new security controls, rather they need to figure out how to apply security best practices in new environments.” IIoT is Booming — But is Your Company Ready? Industry leaders across the globe are making large-scale investments in the IoT — but are they ready for all the challenges that come along with it? In a recent report developed by the BPI Network and featured in the Data Center Journal, 52 percent of executives at large enterprises expect IIoT to have a significant or major impact on their industry within three years — yet only 1.5% of executives surveyed say they have a clear plan and are on their way to implementation. These aren’t leaders from small brands, but executives from huge organizations like Whirlpool, Hitachi and Philips Lighting. And what is these executives biggest concern about the IIoT? You guessed it — security and data privacy. Robotic Automation Changing the Workforce Secretary of the Treasury Steve Mnuchin recently made news when he claimed that the effect of automation on the U.S. workforce is still “50 to 100 more years” away. A recent working paper from the National Bureau of Economic Research strongly disputes that. As written about by the MIT Technology Review, the NBER claims that just in the time period from 1990 to 2007, as many as 670,000 U.S. jobs were lost to automation. Despite this significant impact, robots are still relatively scarce in the U.S. economy. With the growing strength of the IIoT, the number of robots used for automation are expected to increase rapidly, and it will be worthwhile to monitor the impact on the U.S. labor force, particularly in the area of manufacturing.
Microgrids Promise Smart Industry Possibilities
The rise of microgrids, while not inevitable, is a natural next step in the progression of smart grid technology. As automation, data collection and transport, and monitoring capabilities have grown into standard smart grid technologies, companies, military bases, small towns and even cities are tapping into the possibilities for self-sustaining microgrids. What are Microgrids? Microgrids are, essentially, self-contained local energy grids. In most instances, they are attached to the greater grid (macrogrid), but can disconnect if necessary for autonomous operation. In other scenarios, they are local grids powered by alternative energy means. For instance, according to a 2014 article from Navigant Research, Alaska leads the world in microgrid deployment due to the small communities that rely almost exclusively on local energy – in some cases, 100 percent renewable energy. The viability of these kinds of energy distribution networks was not always apparent. For years, the United States has relied on a connected grid system that could be prone to huge shutdowns or security risks. As the technology has improved, microgrids that can disconnect from the macrogrid and function autonomously have opened huge possibilities for smart cities, the Industrial Internet of Things (IIoT), and more. Smart Cities Powered by Microgrids Smart cities rely strongly on the backbone of wireless technology. Imagine a scenario in which a city’s electricity grid went down, killing the wireless networks and effectively bringing any connected technology to a grinding halt. It could mean the shutdown of public transit, water and wastewater treatment facilities, electricity, vehicles, stoplights – the list can go on. Any IoT or IIoT systems would shut down. However, with a smart city set up with a microgrid concept, if a part of the macrogrid went down, microgrids could disconnect and allow normal functionality without service shutdowns. If hackers or other security concerns hit the macrogrid, microgrids can disconnect and protect the system from further threat. And, in many cases, microgrid technology is driving the rise of alternative energy and energy independence. Renewable Energy and Microgrids One of the main problems facing renewable energy has always been storage. How can renewable energy sources create excess energy and store that energy for future use in case of macrogrid failure? What cities and small towns are finding out is that by building a renewable energy system connected to a microgrid, they can effectively develop net-zero communities that don’t have to rely on energy storage in the instance of macrogrid failure. As these technologies have matured and become implemented in different use-case examples, the possibility for more intricate and complex systems is apparent. As the IIoT continues to adopt microgrid technologies and practices, industry practices will mature, creating greater efficiency both operationally and with regard to energy usage and distribution. The future of smart cities and a stronger connected infrastructure could be poised to accelerate along with the growth of microgrid applications.
FreeWave at ENTELEC Booth #313
The ENTELEC Conference & Expo gives you the opportunity to network with professionals from the petroleum, pipeline, natural gas and electric utility sectors. We’d like to discuss our new ZumLink, WaveContact and WavePro solutions and how they can make your operations run smoothly. We will be there from April 25-27. Demonstrations at the Booth Stop by for live demonstrations of our Sensor-2-Server (S2S) solutions at Booth #313. You’ll also have a chance to view our latest Industrial IoT (IIoT) offerings, including rugged, flexible solutions for use in C1 D1 hazardous locations and programmable solutions for communications at the edge of the network. Find out why these solutions are ideal for the wireless oilfield. Technical Sessions Scott Allen, Chief Marketing Officer at FreeWave, will also lead two technical sessions at ENTELEC: Sensor-2-Server: Execute Locally, Communicate Globally Wednesday, April 26 in Room 310B from 3 p.m. – 4 p.m. The idea of comparing data in motion (at the sensor level) to data at rest (in a big data server warehouse) with predictive analytics in the cloud is very appealing to the industrial sector. The problem big data vendors have, however, is access to that data in motion at the sensor location. Legacy SCADA systems are inadequate and there are very few options for the local execution of predictive analytics applications to apply changes actively in the field. This presentation covers Sensor-to-Server intelligent communications for the IT access layer in regards to collecting and transporting data that supports higher-level analytics. IT/OT Convergence: The Impact from the Industrial Internet of Things Thursday, April 27 in Room 301B from 2 p.m. – 3 p.m. The integration of IT & OT promotes process management tools that help ensure every stakeholder in an organization has accurate information. As OT products, such as PLCs and RTUs, become more aligned with commercial software infrastructures, integrating OT information with IT systems at a process level is difficult. Getting these systems to work together to maximize business efficiency is more challenging. IoT networking technology enables large quantities of information to be readily available – allowing these high-speed data transport technologies to be the true enabler in IT/OT convergence. Critical industries, like utilities, need high-speed connectivity, but also want to maintain security standards and protocols. With high data capacity OT networks, the overhead of Internet and security protocols is no longer critical to network latency and SCADA applications for communications. OT/IT networks now use the same Network and Transport layers, clearing one of the fundamental barriers to convergence. We are looking forward to an action packed conference and we hope to see you there!
FreeWave Named as One of “20 Most Promising Wireless Solution Providers 2017”
Today, CIO Review published it’s list of the “20 Most Promising Wireless Solution Providers 2017,” and FreeWave is excited to be included in that list along with many other notable industry leaders! CIO Review writes, “FreeWave delivers best-in-class wireless platforms for secure and cost-effective control, transport and collection of IIoT data.” Among other companies included in this report are Qualcomm, Mojo Networks, Brocade Communication Systems and NetGear. For the last two years, we have focused our new product engineering on developing a comprehensive collection of communication platforms, an Industrial IoT programmable radio (IPR), ruggedized WiFi platforms, and products with mesh networking and frequency hopping spread spectrum (FHSS) capabilities. In the last year, we’ve announced several new products designed to service a wide range of IIoT applications, including a pilot program for our IPR where third parties can develop proprietary IIoT apps for Edge and Fog Computing. Join the ZumLink IPR Pilot Program today! https://t.co/bWVQM8Arun #IIoT #IoT #programming #AppDev #Wireless pic.twitter.com/Km06N4nukK — FreeWaveTechnologies (@freewavetech) April 5, 2017 It’s been an exciting 2017 so far, and we’re excited for what the future holds, both for FreeWave and for the IIoT industry as a whole!
Well-Pad Automation Through the CC1310 Wireless MCU
Oil companies use high-tech radios for production site automation in cool new ways. Competition in oil production can get pretty ugly, especially when the price of oil is low, as it has been for the past several years. To stay competitive against big players, smaller regional oil and gas companies are turning to well-pad automation practices to keep their costs low and their production reliable and steady. What is well-pad automation, you ask? Well, to put it simply, it’s the deployment of technology that monitors, measures and manages the production and storage of oil and gas at a well site or storage tank in real time. This technology includes sensors that measure pressure, temperature, flow, level and all sorts of other things that all need to work together in order for a well to produce, store or transport its product. Once these sensors are deployed, the next step is to add intelligence to automate certain functions that would otherwise require human intervention. Programmable logic controllers (PLCs) and remote terminal units (RTUs) are simple computing devices that automatically take action when certain conditions occur on the pad. But you thought this blog post was about fancy new high-tech radios – it is! Here’s where they come into the picture. Older radios transported sensor information from the well pad to an operations team, where they viewed the information and decided whether or not to take action. These radios generally transmitted at very low bandwidths (115Kbps-400Kbps), which severely limited the type and amount of data that could be transmitted. This limitation in many cases prevented companies from being able to take advantage of new automation technologies (like smart sensors and devices) that require more bandwidth. Today, companies like FreeWave Technology Inc. are leveraging technologies like TI’s SimpleLink™ Sub-1 GHz CC1310 wireless microcontroller (MCU) radio chipset as part of a new radio infrastructure that delivers much higher data rates. By combining the microcontroller, a highly optimized radio and an ARM® Cortex®-M3 48MHz application processor into one rugged, industrial-grade, low-power offering, well-pad automation can make a huge leap forward. These radio appliances can deliver data rates as high as 3.7Mbps over 20 miles in some cases, enabling oil producers to deploy more sensors and technologies that improve safety and operational efficiencies and reduce costs. Figure 1 below shows a picture of the FreeWave ZumLink Z9-PE IIoT Programmable Radio (IPR) with 512 MB of RAM and 1 GB of Flash. This device also runs third party and custom industrial applications. Another cool thing about these radio appliances is that they are programmable. They come with an integrated circuit board (shown in Figure 2 below) equipped with an ARM processor; 512MB of RAM; 1GB of flash storage; and a Linux kernel with support for Python, Java, If This Then That (IFTTT) and many other programming languages. Deploying advanced intelligence into the sensor networks that run their production helps oil companies eliminate additional costs, gather and store more information, and engineer new applications that improve production and safety. Tank-flow management, intelligent security surveillance, data logging and pump shut-off are just a few of the applications that oil companies can deploy in these new networks. To learn more, feel free to check out the ZumLink IPR product page. More information on other products within the SimpleLink MCU platform is also available here. *This post was originally published on TI’s E2E Community blog, which can be found here.