On the Edge of Transformation: IIoT for Water/Wastewater
Innovation is everywhere. Even the most industrial of industries are being disrupted by technology that has the power to transform entire market landscapes. The water/wastewater industry certainly falls into this bucket as we see automation and Industrial IoT (IIoT) driving new processes and uncovering data that enables intelligent decision making. Robust wireless, FHSS-based solutions are available today to ensure consistent and reliable delivery of that important data. As we seek more connectivity as a means to understand the network from the business office to the furthest endpoint, all in real-time, we see the potential impact on operations. As a result, utilities are beginning to adopt new methods of monitoring and control that offer more visibility over operations and connectivity at every network endpoint. As a new generation of tech savvy workers rises, further driving innovation and technology as a means for success, we see automation take over many monitoring and control processes – especially in remote networks. The potential benefits water/wastewater impact the utility and the customer, from more efficient operations to safer water. Things like predictive analytics are now available to serve as a problem solving tool for common monitoring issues, such as predicting the likelihood of pump failure. The ability to add programmable radios at the network’s edge opens up new possibilities for streamlined data, enhanced cybersecurity and precise control. The potential cost savings alone are catching the attention of decision makers in the utility business. Here are a few examples of how IIoT is driving major innovation in the water/wastewater industry, and how wireless solutions can help utilities create a network that enables new technology: Treatment Plant Automation – Automation at water treatment plants optimizes operations. With automated monitoring and control, water utilities can further ensure that the water offered to customers is safe for consumption and can help identify issues in real tie. High-speed wireless solutions can help drive real-time automation to ensure uptime, flexibility, safety and long equipment life. Remote Tank Level Automation– Tank level monitoring and control, a critical operation, for water/wastewater is even more challenging when the tanks are remotely located. With automation solutions in place, this can be done in real time. New wireless technologies for remote tank level automation can take this a step further by enabling programmability by hosting third party applications specific to the needs of the individual tank monitoring network. Chemical Injection Water/Wastewater – With the ability to deliver data directly to the cloud, chemical processes can be closely monitored to ensure the utmost in safety and performance. The access to data in real-time is essential in monitoring the chemical process and it ultimately leads to fewer mistakes the chemical injection process. Wireless solutions can enable seamless delivery of this critically important data to the cloud. IIoT is changing the way water/wastewater organizations approach many of their processes, and so far we are seeing streamlined operations and endless potential industry transformation. As the water industry evolves, it will be interesting to see what changes take shape.
IIoT Top News: Oil and Gas Early Adopters
The Industrial Internet of Things (IIoT) is not just a means for organizations to harvest and analyze vast amounts of data to drive better business decisions. It is driving innovative ways for companies to keep their employees safe and out of harm’s way. In the latest IIoT Top News, we’ll take a look at some trending stories from the oil and gas industry, a quickly growing user of the Industrial Internet of Things to help power data-driven decisions, business operation optimization, and employee safety. The possibility of an industrial wireless oilfield is now not just a pipe dream, but a reality. Wearable Technology and the IoT Improving Safety for Oil and Gas Workers For many folks, wearable technology is viewed as a simple fad of smart watches and health tracking hardware. In the grand scheme of things, we’re just beginning to scratch the surface of wearable tech, with biotechnology, embedded smart tracking hardware, and much more right on the horizon. As noted in this article from the EconoTimes, one of the industries beginning to leverage the power of wearable technology is oil and gas. Looking back at 2014, occupational fatalities nationally were 3 per 100,000 workers. In oil and gas, that number skyrockets to 15. That’s why some organizations in this hazardous industry are turning towards the IIoT and wearable tech to keep their employees safe. From fall risk mitigation, to toxin and fume inhalation prevention and diagnosis, the applications for wearable technology for oil and gas employees in the field are many. One of the current limitations for wearable tech in the field is the ruggedness of the technology, but as new devices are designed that can withstand harsh environments, you can expect to see more adoption of this potentially life-saving tech. The IIoT and Operationalizing Excellence For the oil and gas industry, the advent of the Industrial Internet of Things (sometimes referred to as Industry 4.0) holds massive promise. From reacting to changing global trade conditions in real-time, to instantaneous equipment feedback, there are myriad uses for connected tech. This recent article from IoT Business News cautions us to heed the warnings of the dot.com era and take a strategic approach. The article argues that expecting the IIoT to be a silver bullet for business decisions will only lead to more confusion. It notes that Industry 4.0 is an incredibly powerful tool, one with the ability to fundamentally change the way oil and gas organizations do business, but it is important to go “back to the basics” and understand business needs and objectives before trying to dive into the data. In the Oil Industry, IoT is Booming Oil and gas is not always known for its agility, but when it comes to the Internet of Things, the industry is moving at a decidedly rapid pace. This article from Offshore Engineer asserts that the IoT is not only increasingly becoming part of many organization’s strategies, but is fundamentally becoming embedded in the “oil psyche.” Dave Mackinnon, head of Technology Innovation at Total E&P UK, provides quite a bit of color around this assertion, and he believes that oil and gas is moving towards a “digital supply chain” that was fundamentally revolutionize the sector. Mackinnon also believes that when it comes to the IoT train, it’s either get on, or get left behind. “In an IoT world, many companies will discover that being just a manufacturing company or just an Internet company will no longer be sufficient; they will need to become both – or become subsumed in an ecosystem in which they play a smaller role,” Mackinnon said. Cyberattack Concerns Loom for Oil and Gas While the highest profile cyberattacks have been in the commerce and financial sectors, industrial targets remain at high risk. A recent article from Hydrocarbon Engineering notes that “because of its complex layers of supply chains, processes and industrial controls, makes [the oil and gas industry] a high value target for hackers.” As oil and gas organizations look to leverage the Internet of Things to bring increased value to their companies, it will become more and more important to build extra layers of security into their systems. Enabling the Connected Worker While the IIoT is indeed changing the way oil and gas companies make decisions, it is also changing the way employees perform their jobs. This article from Gas Today notes some of the ways the IoT is changing the roles of workers in the field. From AI planning and scheduling, to predictive maintenance on equipment, the connected worker faces a vastly different workplace landscape than even a few years in the past. Ultimately, oil and gas companies will look to leverage the IoT to help their employees make better decisions, as well as to stay safer and work more efficiently. Final Thoughts The Industrial Internet of Things is growing with rapid adoption across many verticals, but oil and gas is already reaping outstanding benefits from this next phase of industry. Lowering costs, optimizing oil production, and increasing worker safety are just a few of the ways oil and gas is leveraging this technological revolution.
Rugged Wireless Radios for International OEM Applications
For original equipment manufacturer (OEM) and military applications around the world, operational success requires reliable data delivery. This 100 percent achievable with rugged wireless radio solutions. As Industrial IoT pushes for more connectivity, coupled with the surge in commercial use of unmanned aerial systems (UAS), the pressure for around the clock command and control (C2) links is higher than ever – and it’s happening on a global scale. To support these growing needs, FreeWave has announced the general availability of the MM2-5 Watt 1.3 GHz (13X5W) integrated radio. Offered in a small package for ease of integration, the MM2-13X5W features an external 5 Watt output, making it ideal for UAS, OEM and military applications where reliability is paramount and space is at a premium. These solutions can be leveraged to deliver important data in the U.S. and abroad for a wide variety of mission critical applications. The MM2-13X5W has a lot to offer starting with it’s built in versatility and the ability to function as a gateway, endpoint, repeater or endpoint/repeater. Security is a priority – each MM2 13X5W is equipped with proprietary frequency hopping spread spectrum (FHSS) technology. It also features a line-of-sight range of up to 90 miles, and can be deployed in international settings where lifesaving communications and security are paramount. A number of these use cases include UAS applications, soldier training, environmental monitoring and other government and defense needs. Next Generation UAS Applications As the commercial drone market rapidly expands, the number of use cases is filtering into new markets. Beyond the military scope, commercial UAS applications have the potential to completely transform the monitoring, control and data analysis processes for many industries. The MM2-13X5W is equipped to support this next wave of these UAS applications, including: Pipeline monitoring as a service – drones can help maintain safe and consistent visibility of the pipeline and deliver that critical data to the network. The small form factor and proven reliability means uninterrupted data transmission in remote settings. Homeland security apps – recently, in the U.S., there have been many heated conversations around border protection. Many drone supporters believe that UAS can offer a cost effective way to monitor the nations borders. The U.S. border patrol even recently solicited contractors to build facial recognition drones. Drone delivery service – As we look at the future use of commercial UAS, drone delivery is a popular topic of conversation. We’re also seeing use cases where drones can deliver food and medicals supplies to high risk areas in third world countries. Precision Agriculture: Drones can enhance crop visibility, enabling smarter decisions and more food output. The potential impact of drones in precision agriculture is becoming recognized throughout the world. As the possibilities for commercial UAS continue to multiply, so does the need for secure C2 links for successful operations – and this is where the MM2-13X5W is an ideal solution. Additional Product Features The MM2-13x5W also features the following: 115.2 and 153.6 kbps selectable RF data rates TDMA, Super Epoch TDMA, and AES Encryption Performance tests from -40 degrees Celsius to +85 degrees Celsius Data link range up to 90 miles For more information about the MM2-13X5W, please visit: https://www.freewave.com/mm2-m13-series/
International IIoT Perspectives: Precision Agriculture
In the United States, precision agriculture is one of the largest industries by both operational scale and economic impact. The technology utilized is typically on the cutting edge, especially for automation and control. Things like sensors, programmable radios and generally more complex software applications have allowed that industry to evolve, domestically, to a point where land and other resources are used optimally. Internationally, although there have been ‘smart’ or ‘precision’ practices in certain sectors of agriculture, many countries are just now starting to adopt the technology to its fullest extent, including the ability to innovate via start-ups and new practices. India & the Digital Agriculture Revolution According to an article in India Times (image credit), the country is aiming to secure a 20 percent stake in the IoT market share in the next five years through its ‘Digital India’ initiative. While many might look at India and think of the sprawling and diverse urban environments that could offer some potential complications for IoT, it is rural areas seeing the most interesting developments. There has been a noticeable growth in tele-medicine operations, which can allow patients in remote areas to interact with doctors for consultation, eliminating the need to get to a city, or vice versa. Perhaps an even greater area of growth lies in the agricultural realm. According to the article, agriculture employs 50 percent of the country’s population, so the potential for a digital revolution is high. Farmers are just starting to implement sensor technology, automation hardware, and even leading-edge tools like voluntary milking systems the allow cows to be milked on an automated machine according to biological needs. Israel’s Precision Ag Start-Up Community In Israel, where IoT technology is starting to mature, the name of the game is data collection and analytics. Mobile applications, sensor data collection hardware, and advanced analytics software are three areas that Israel is seeing significant market growth, according to Israel21c: Israel stands out in precision-ag subsectors of water management, data science, drones and sensors, says Stephane Itzigsohn, investment associate at OurCrowd. … “Multiple startups are aiming toward the same goal — providing good agricultural data — but approaching it from slightly different angles,” Itzigsohn tells ISRAEL21c. “One might use satellite images or aerial photography; another might use autonomous tractors. Not all will get to that peak in the long journey of farming becoming more efficient.” For example, CropX, an investor-backed advanced adaptive irrigation software solution, can be placed throughout a farming area and synced with a smart phone, allowing the operators to receive real-time data updates on things like soil and weather conditions. CropX is based in both Tel Aviv and San Francisco, indicating that the technology may be poised for wide international adoption in the future. Analytics Drive Italy’s Drought Recovery Italy is perhaps best known for a single agricultural export: wine. However, many would be surprised to find out that it is one of the top corn producers in the European Union, producing more than 7 million tons of corn in 2015, according to an RCR Wireless report. In 2016, the EU’s total corn output dropped noticeably due to year-long droughts affecting production. In Italy, start-up companies collaborated with industrial ag operations develop and deploy widespread soil sensor and water automation technology to help streamline farming practices and create a more efficient system for resource use. The technology allowed farmers to get a comprehensive look at their operations and identify high and low yield areas in order to better utilize the available space. Precision Agriculture and the Industrial IoT The continued maturation of IIoT technology is enabling countries around the globe to better utilize resources like water, energy, and land area to create better agricultural operations. As populations continue to expand, and food production becomes even more important, being able to connect these technologies across the globe could become a key factor in optimizing crop output in critical areas. Imagine the above farm in Italy being able to send its data to data scientists in Germany or the Eastern Europe who could in turn analyze it and provide actionable feedback. Or an industrial farm in Israel managing its yields sending that information in real-time around the country. These possibilities are not far off, and as the networks, hardware and software continue to be adapted, the future of precision ag internationally, will become the present.
5 Reasons Why Your IIoT Network Needs Wireless Programmability
If your company is grappling with the shift towards wireless connectivity and automation, you’re certainly not alone. As more processes are automated, especially within industrial markets like oil and gas or utilities, data has become a valuable asset that provides critical information for operations and performance. Up and coming industry leaders are pushing for modern Industrial IoT (IIoT) networks, as the older, more traditional workforce heads towards retirement. As a result, the processes of yesterday are being phased out – especially when it comes to choosing between hardwire and wireless for remote deployments. For many, wireless solutions have been accepted for some time as the primary means in which data is collected, transported and analyzed. Frequency Hopping Spread Spectrum (FHSS)-based technology in particular is proven to be a reliable and maintainable wireless option. Now, however, we are facing an entirely new realm of opportunity with FHSS-based programmable wireless technology that is molding the future of data collection. Here are five reasons why you need to consider programmable wireless technology for your IIoT network: Bring it all to the Cloud – Programmable wireless solutions are equipped with the ability to incorporate custom, third party applications at the Edge. When we talk about the Edge, we essentially mean the outermost layer of the network. For industrial networks, the Edge is often a remote area where mission critical operations occur. In order for the business to capture a holistic view of their entire network, many have added sensors and other data-capturing devices at the Edge. By adding third party applications with new programmable wireless technology, businesses are able to expand automation capabilities, reduces costs, simplify operations and enable data transmission directly to a private or public cloud. Smart Data Over Big Data – The goal of achieving ‘Big Data’ is common practice in most modern IoT and IIoT networks. Decision makers recognize the power of data and know they need to receive it from every network end-point. We’ve seen this to be true purely in the proliferation of sensors and IoT devices deployed across the U.S. that continues to grow. Having programmability at the edge of the network offers a big advantage, because you have the ability to control of the quality of the data. Even better than Big Data is access to the specific, timely data that is most pertinent to your business operations. Robust and Reliable Technology: Programmable wireless solutions are equipped to embrace the future of data collection. The beautiful thing about these solutions is that the backbone of the technology is FHSS. This particular Radio Frequency (RF) technology has been proven in some of the most adverse conditions imaginable. These technologies are trusted by the government to maintain their links and have proven to operate in some of the most dreadful and intense environments in the world . Where performance is critical – these solutions have proven to work for decades and now programmable options can reliably bring this data directly to the cloud. Flexible and customizable– We are all privy to the fact that no two networks are the same. With programmable options, radio functionality is customizable to the specific needs of the network. Despite the variances, remote networks likely have one thing in common – data needs to be transported across significant distances. Programmable wireless technology is built to be deployed at nearly any point in the network where sensors are collecting data. This is an area in which traditional hardwire solutions almost always fall short, as most businesses cannot afford the cost of running hardwire to these remotes sites. Besides, there are wireless options that are built for easy installation and long-range communications that simply make the most sense for remote deployments. Meeting Modern Demands– Today, IT and OT departments are one in the same. These modern networks eliminate barriers which is conceptually great for operations. However, like any major disruption, convergence has created a number of challenges from visibility, to cultural difference, to security. To ease some of these tensions, modern wireless solutions are designed to drive connectivity for the entire network, and are even able to tie in legacy systems from the field. Many FHSS-based technologies offer secure-data transmission, and by leveraging the programmable wireless technology, and you can bring data to the cloud. Wireless technology is recognized as a necessary solution for remote operations. As IIoT networks mature, there are stark advantages in leveraging programmable solutions. Not only do they rack up cost savings and streamline operations, but they are deployed at the edge of the network with minimal hassle and are built to deliver in any environment.
Remote Tank Level Monitoring and Automation
Industrial livestock operations have several critical needs in order to function smoothly, but perhaps most important is also the most fundamental: water. On remote sites, tank level monitoring and automation are tools that can essentially make or break the entire operation. In many of these situations, the needs of the site managers are different, so in order to maximize the technology being deployed to drive the automation process, they need to be able to customize the functionality. For operations using radio communication networks, those radios need to provide maximum programmability in order to host third party applications specific to the needs of the site managers. We recently finished a deployment that serves as an excellent case study for remote site tank monitoring deployments and included some interesting uses of radio programmability: The operator of a Rocky Mountain based livestock facility approached FreeWave to assist in remote data visualization of water tanks that are vital to its operations. The pain point was that the tank levels could only be observed visually on premise. After consideration of the terrain (mountainous, remote and big temperature swings), sensors and communications infrastructure, FreeWave engineers recommended ZumLink IPR with the Node-RED programming language for intelligent tank data visualization via browser or mobile device. The facility has minimal to zero staff most of the time. If a fault occurs such as a leak that prevents a tank from filling, the facility operators are unaware until they visually inspect the remote faulty tank, located a half mile from property headquarters. The operators wanted to reduce the number of trips to the tank facility and remotely monitor all tanks via web-based browser or mobile device. For the complete case study, visit this link: https://www.freewave.com/case-studies/remote-tank-monitoring-automation/.
Microgrids Gaining Mainstream Traction
While “going off the grid” is not a new term, microgrids are finding new footholds in a changing utilities industry. Recently, more and more cities and states are turning to microgrids not only as highly effective ways of increasing energy resiliency, but also as pragmatic and cost effective strategies for shifting population densities and energy consumption behaviors. Below, we’ve gather some of the top recent headlines on the changing microgrid landscape. Microgrids In New Applications Microgrids have long been viewed as an excellent tactic for supplying power to rural areas and island communities. However, recent data shows that microgrids may be expanding. This article from the Motley Fool, notes that governments and correctional facilities are turning to micrograms as viable options for emergency backup power. Another area where microgrids are seeing growth is in use for growing suburbs and rural areas. In the past, power companies has to build costly new transmission lines to service growing population areas, lines which may only be used during peak demand for a few hours a year. By leveraging microgrids, energy companies can build cost effective solutions for dealing with rare power consumption spikes. Communities Turn to Microgrids for Energy A recent article from Electric Light & Power notes that there are developing plans to build 13 microgrids across the state of New Jersey to increase the areas energy resiliency and better prepare the state for emergency situations. The effort, spearheaded by New Jersey Board of Public Utilities President Richard S. Mroz, has been prioritized in the wake of the devastation caused by Hurricane Sandy, during which many areas were left without electricity and running water for weeks on end. One of the proposed microgrids in downtown Trenton would connect several important government buildings, helping keep the cities most essential resources up and running even during emergency situations. Building a Carbon Free City In the stretch of land between the city of Denver and its airport, a new town is being built that will rely solely on a microgrid for power — and it will be completely carbon free. The city, called Peña Station Next, will rely primarily on solar energy and is receiving large financial support from the city of Denver. As reported in this article from The Scientific American, the city will rely “mainly on solar energy, a king-sized lithium-ion battery and various energy efficiency schemes” for its power. Will Battery Tech Change Microgrid Strategies? Batteries are getting bigger — so what does that mean for microgrids? As noted in this article from Teslarati.com, Neoen and Tesla recently announced the creation of a 100MW/129MWh battery adjacent to the Hornsdale wind-farm in South Australia. One of the claims Tesla had in building the battery is that the company could make money by providing off-the-grid backup power. According to the article, however, this might not be so simple. Bruce Miller, a principal consultant for Advisian, says the 80-minute discharge time for Tesla’s system isn’t in line with 10-megawatt- and 20-megawatt-hour systems that could produce $2.1 million a year from supplying backup energy. Brooklyn is On-Board with Microgrids Brooklyn, the dense suburb of New York City, is one of a growing list of major population centers to explore microgrids. As noted in this article from Green Biz, Brooklyn is exploring a strategy where a virtual web of buildings whose owners can buy and sell power to each other using blockchain technology to manage the transactions. Currently, the program has hundreds of participants signed up, and users will ultimately be able to control their participation through the use of an app. With more governments and power companies exploring the promise of microgrids, it may only be a matter of time before a microgrid is a viable primary or emergency energy option for many. Where do you see microgrids growing next?
Do Drones Help or Hurt Wildfire Fighting?
Summer wildfire season is in full swing across North America, and the question of the utility of drones is once again in the headlines. The technology has proponents on both sides, but it has also been linked to several incidents, including the grounding of critical aircraft in a firefighting effort in Arizona. A key point of differentiation in this discussion is the use of personal drones, similar to the one mentioned in the article above, and commercial drones designed to serve a specific purpose in operations, similar to military or first responder deployments. The problem that firefighters face is the unauthorized use of personal drones, which can create dangerous situations for support aircraft like helicopters and tanker planes. Because firefighting aircraft fly at such low altitudes, they share the same airspace as commercial or personal drones, and at that altitude, one instance of interference can be deadly. A recent Quartz article pointed out the correlation between drone interference and the effect it can have on the people most impacted: civilians and the firefighters themselves: The drone problem has plagued fire departments for the last few years; In 2016, during Utah’s massive Saddle fire, a drone prevented firefighting planes from taking off—if the planes had been able to attack the fire from above, people would not have needed to be evacuated, according to Utah governor Gary Herbert. So far, in 2017, there have been 17 incidents of unauthorized drone disturbance in wildfire areas. In 2016, 40 such occurrences were recorded. In Colorado, firefighting crews are figuring out the most effective ways to use authorized unmanned aerial systems (UAS) to aid fire suppression tactics. When used in an official capacity, drones can be extremely useful. They can be used to survey landscape during a lightning storm when manned aircraft are grounded, or they can be used to deliver supplies to ground crews working in remote areas. Further, with new infrared technology, drones can be used to essentially automate the response protocol process to identify fires with the greatest threat potential, and dispatch the necessary resources before the fires explode out of control. Other leading-edge UAS applications for firefighters include drones that can be pre-programmed with Google Maps flight plans prior to launch, or drones that can stay in the air for hours with greater line-of-sight communications than ever before. The true difference between unauthorized and authorized UAS in wildfire fighting situations is the communication capabilities. When deployed correctly, authorized UAS can use TDMA technology to communicate with other aircraft in the area and ensure that no collisions or interference incidents occur. TDMA is a frequency channel access technique for shared communication networks, essentially enabling a more sophisticated way to drive Point-to-Multipoint communications. It allows multiple transceivers to access and share a single radio frequency channel without interference by dividing the signal into different transmission time slots. This enables swarming applications that enable multiple unmanned systems to operate autonomously, in tandem. For many personal drone users, the temptation to use this emerging technology to capture images or video is strong. Better cameras, greater operating distances and stronger communication capabilities have created a tool that can be both fun and useful for the average user. However, for wildland firefighters, the use of these unauthorized drones pose a serious threat to both their safety and the safety of the civilians they are tasked with protecting.
The Importance of Frequency Hopping
(Original blog can be found on the Texas Instruments website) Are you a fan of those 1940s black-and-white movies where a damsel in distress gets rescued by a rough-and-ready private eye? If so, then you’ve probably seen actress Hedy Lamarr. In real life, Hedy was no damsel in distress. She was one of the primary inventors of frequency hopping technology now seen in Wi-Fi®, Bluetooth® and code-division multiple access (CDMA). The technology Hedy Lamarr helped invent is frequency-hopping spread-spectrum (FHSS) radio technology. FHSS is a wireless technology that spreads signals over rapidly changing frequencies. Each available frequency band is divided into subfrequencies. Signals rapidly change, or “hop,” among these subfrequency bands in a pre-determined order. Used in global industrial applications for over 60 years, 900MHz FHSS radios equipped with TI’s chipsets like the SimpleLink™ Sub-1 GHz CC1310 wireless microcontroller (MCU) now have the ability to host process-automation apps for the intelligent command and control of remote sensors and devices. Without having to leverage expensive Wi-Fi bandwidth, lay fiber or employ cost-prohibitive cellular, companies can now take advantage of proven low-power FHSS technology to automate processes at the network edge. The proliferation of smart sensors and high-bandwidth devices makes low-power FHSS technology a viable and cybersecure wireless data option for oil and gas, unmanned systems (like unmanned aerial vehicles [UAVs] and robots) and original equipment manufacturer (OEM) wireless integration. Because innovators like TI have developed such powerful chips, FHSS is no longer restricted to pure telemetry or input/output (I/O). Indeed, FHSS increasingly supports voice and video, and can scale to form self-healing mesh networks. Moreover, FHSS transmits data over much longer distances than Wi-Fi, Bluetooth, LoRa or zigbee – up to 60 miles in some cases. Because FHSS is a wireless technology that spreads its signal over rapidly hopping radio frequencies, it is highly resistant to interference and is difficult to intercept. Interference at a specific frequency only affects the transmission during that extremely short interval, making FHSS inherently cybersecure. By employing intelligent TI-based FHSS technology, organizations can take advantage of real-world fog computing and intelligent edge communication devices that are cybersecure and resilient. When deployed as process-automation nodes, these devices (pictured in Figure 1) can make decisions and take action at the access level (or at the sensor or device). Indeed, not only is FHSS a reliable and robust option for Internet of Things (IoT) networks, it is also a low capex and opex solution that can work for years without maintenance. Contact FreeWave to learn more about FHSS technology and order a couple of TI-powered radios that you can program (in Python, Node-RED and Node.js) for real-world fog and edge applications. Also, find out more information about the CC1310 wireless MCU and other products within the SimpleLink MCU platform.
Rugged IIoT Solutions That Can Weather Any Storm
Mount Washington Observatory (MWO) is a research facility located at the heart of what many consider the “home of the world’s worst weather.” Think thick ice, dense fog, drifting snow, powerful winds, sub-arctic temperatures, rapidly changing conditions and more fog. The New Hampshire-based facility provides critical research data on the Earth’s climate and doubles to protect the lives of the MWO crew, US Forest Service Snow Rangers and New Hampshire Fish and Game employees by providing real-time weather updates. Collecting data is critically important for MWO operations and the safety of those it helps protect. In this vicious and unforgiving environment, FreeWave’s rugged IIoT solutions are responsible for delivering the data that is invaluable to research and safety efforts. Powering through Fog and Ice The extreme conditions at the MWO facility range from fog with 50-100 mph winds to sub-arctic temperatures that are accompanied by 140+mph winds and thick ice. The weather is known to change frequently and fast, with ice accretion rates of up to 12” per hour — and visibility is often limited or non-existent. These extremes make it the ideal location for studying the environment and climate. However, when search and rescue teams are deployed the situation can quickly become dangerous. They rely on MWO’s real-time data to assess conditions. As you can imagine, there is little room for connectivity issues when people are out in the elements. Ruggedized IIoT Solutions The key to establishing a network at Mount Washington is robust and hardened technology that will perform in the Summer and Winter extremes. For more than 13 years, FreeWave 900MHz spread spectrum radios have delivered the data that the crew relies on to survive some of the most intense weather in North America. While the technology is constantly exposed to the rough conditions, it performs day-in and day-out, providing critical data around the clock. Check out the full case study, including a description of the network here: https://www.freewave.com/mount-washington-observatory/